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This document was created as part of a larger effort to transition the usage model of the shared 
supercomputing resource Cray XE6, Garnet, toward capability class computing. That process 
involves changes in the management of the system and changes in the user view of this 
system’s primary function as a scientific instrument. 

In particular, this document addresses users who need more advanced I/O behavior from their 
application in order to scale to larger size jobs. In this context, more advanced means more 
parallel or more intelligent or both. 

The most common reasons for using more advanced parallel I/O in applications on Garnet are: 

1. Speed up I/O during execution. For example, a simulation which outputs data for 
visualization and analysis at regular intervals would benefit from speeding up the write 
phase. 

2. Control file system access globally, instead of on a per-core basis. For example, some 
parallel I/O libraries allow a user to tune how many simultaneous file accesses occur, 
independent of number of processes. 

3. Make code more maintainable. Using parallel I/O libraries instead of writing out I/O logic 
allows the library implementation to change without affecting the main code. 

The following sections present an introduction to parallel I/O concepts in the context of high 
performance computing. In particular, this document focuses on the Cray XE6 system, Garnet, 
which uses the Lustre file system to support fast parallel data access by user jobs.  
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1. Utilizing Lustre File System Capabilities 
Lustre is heavily used in large-scale cluster computing because of its parallel distributed file 
system. Its scalability supports numerous compute clusters. 

The architecture of the Lustre file system consists of three key components: 

1. One or more metadata servers (MDS’s) 
2. Object storage servers (OSS’s) 
3. Clients.  

These all communicate over a network interconnect. Each MDS contains at least one metadata 
target (MDT) per Luster file system. Each OSS stores file data on at least one object storage 
target (OST). Clients are able to access and use the data contained in OSS’s, as Lustre enables 
concurrent read/write access to the files. 

The technical specifications of the Lustre file system on Garnet consists of: 

• 240 OSTs 
• 3.1 TBs of OST Capacity 
• 737 terabytes (TBs) of Maximum Capacity 

1.1. Lustre Concepts 
File striping on the Lustre file system can significantly improve I/O performance. Striping allows 
read/write operations to access multiple OST’s concurrently. Therefore, more than one OST can 
be associated with a file, causing that particular file’s data to become striped across the objects. 

The capacity and I/O bandwidth scale in relation to the number OST’s used to stripe the file. 
The user has the ability to create differing striping patterns for each file, allowing for individual 
and custom tailoring of performance and capacity. The lfs setstripe command is used to set the 
stripe parameters. If a user does not wish to use the default stripe configurations for the Lustre 
file system, the stripe size, stripe count and stripe offset parameters may be defined. For the 
Garnet HPC, the default stripe count is 4, and the default stripe size is 1 Megabyte. 

To support parallel file reads and writes, a distributed lock manager is used to maintain the 
integrity of the data contained within the file. The MDT manages the metadata locks while the 
file data locks are managed by the OST. Multiple reads are allowed on the same file, as well as 
multiple writes for particular regions of the file. Therefore, if multiple clients are engaged in 
reading or writing a part of a file, the lock manager allows the clients to view consistent results. 
The OST can perform multiple I/O operations such as locking, disk allocation, storage and 
retrieval. 

1.2. Optimizing for Performance 
In order to have striping capabilities placed on a directory, certain commands must be used. 
The directory must be set with the striping settings before files are created within it. The striping 
files that lie within the directory may have their striping settings changed though the cat, cp, sep 
or tar commands. The files created during program execution under the aforementioned 
commands will obtain the same striping settings as well. Commands such as mv will not change 
the original striping settings of the file. 



  
 
 

1.3. Lustre File System Commands 
The available commands for lfs are: 

• setstripe 
• getstripe 
• find 
• check 
• catinfo 
• join 
• osts 
• df 
• quotachown 
• quotacheck 
• quotaon 
• quotaoff 
• setquota 
• quota 
• help 
• exit 
• quit 

Listed below are the layouts on how to invoke these commands. If additional help is needed, 
type lfs help or lfs help $command where $command is one of the aforementioned commands. 

• Viewing Striping Information: 
$ lfs getstripe <file-name — dir-name> 

• Altering Striping Pattern: 
$ lfs setstripe [–size s] [–offset o] [–count c] [pool p] <dir—filename> 
Where 
–size s  is the stripe size. Type ‘0’ to use the default 
–offset o identifies the starting OST, Type ‘1’ to use the default (round robin) 
–count c gives the stripe count, type ‘0’ to use the default 
-pool p  is the name of the OST pool 

• Viewing OST Storage: 
$ lfs df [-i] [ih] [path] 
reports the file system disk space or in odes usage of each MDS or OSD 

• Display MDS/OST Status: 
$lfs check <osts — mds — servers> 

• Display Info for Specified Type Logs: 
$lfs catinfo {keyword} [node name] 

• Join two Lustre Files into One: 
$join <filename A> <filename B> 

• Change Files’ Owner or Group: 
$lfs quotachown [-i] <file system> 
-i is the ignore error if the file does not exist 

• Turn File system Quotas On/Off:  
$lfs quotaoff [-ug] <file system> 
$lfs quotaon[-ugf ] <file system> 



  
 
 
It is also recommended to not create files greater than 200 GBytes for the mass storage 
archival, as this greatly increases the chance of data corruption. This can result in slow file 
retrieval and could possibly prevent the storage system from creating a backup of your file. The 
tape file systems are better suited for archiving a tar ball that contains many small files instead 
of many small individual files. 

Note: It is not advised that users set an initial file stripe number with the lfs setstripe -i flag. 
When this flag is not used, then the initial stripe is randomized. This way, files will be distributed 
evenly across OST’s. If users set the initial stripe number, then files will tend to cluster up on a 
particular OST, usually OST 0. Randomization will prevent this. 

2. Implementing Parallel I/O 
This section provides a survey of parallel I/O in the realm of HPC programming. First, section 
2.1 presents several common patterns that applications use for parallel file access. Knowing 
these patterns will be useful for implementing parallel I/O calls or for understanding I/O options 
in some tool or library. 

Next section 2.2 presents information on libraries and file formats that are commonly used on 
HPC platforms. Being aware of these implementations and their strengths and weaknesses will 
help in using them directly or in understanding I/O options in libraries built on top of them. 

2.1. Parallel I/O Concepts: Per Process I/O, e.g. POSIX I/O 
Supposing that some parallel application has been executing, then comes to point where it 
needs to input or output some set of data. It is possible to design a variety of parallel behaviors 
using basic I/O commands, such as traditional POSIX I/O library calls – fopen, fseek, fwrite, etc. 

The following subsections describe several common I/O patterns used on Garnet and other 
HPC systems. Each can be implemented with serial I/O calls made from one or more processes 
in a parallel job. Each method has certain drawbacks, which are listed after a description of the 
method. 

2.1.1. 1 Writer, 1 File 
The application could have all processes communicate through a single process, which writes 
all the data to a single file. 

 
The drawbacks to this method are: 



  
 
 

1. The more processes in the application, the more overloaded the network connection to 
process 0 becomes when all processes send or receive their data to be written or read. 

2. Process 0 can only write out data at some maximum rate, limited by a single node’s 
hardware and network connection. Allowing more processes to write simultaneously 
removes the bottleneck incurred by using only a single node to write. 

Due to the fact that the application has a single point of file access, this method is typically the 
easiest to implement, but scales poorly. 

2.1.2. N Writers, N Files 
To avoid bottlenecking through a single process, each process could independently access a 
file which contains only data from that process. 

 
The drawbacks to this method are: 

1. As the number of processes increases, the file system must handle larger numbers of 
simultaneous file accesses. This requires large amounts of meta-data and overhead for 
sharing the physical links to the disk subsystem. These overheads will cause slowdowns 
in I/O speed if the number of processes is large enough. 

2. Managing large numbers of files on disk can be tedious in terms of data archiving and 
retrieval. 

3. If a user varies the number of cores from one job run to the next, reading back data from 
some set of N files onto M /= N processes can be complicated, since data from multiple 
files may need to be stitched back together. 

Of the I/O methods in this section, this is probably the most common, due to its simplicity and 
good performance up to several hundred processes. Above several thousand processes, 
however, more complex methods become more advantageous. 

2.1.3. N Writers, 1 File 
To avoid storing many separate files, all processes could read and write from a single file in 
multiple locations. 



  
 
 

 
The drawbacks to this method are: 

1. Each process must calculate offsets into the file, so that reads and writes from separate 
processes do not interfere with each other. This leads to more complicated code. Also, 
padding between files should line up with file system data striping, which further 
complicates offset calculation. 

2. The file system still has to support many independent file accesses, with the associated 
problems of meta-data and physical link sharing bottlenecks. 

3. If the file system does not allow independent locking of separate parts of a single file, 
then the accesses cannot occur in parallel. The parallel writes will serialize, reducing 
overall write speed to that of a single writer. 

Because of file locking and serialization issues combined with complex logic, this method is 
typically a poor choice. 

2.1.4. N Writers, M Files 
To make the most of parallel file system capabilities, processes can arrange their data so that 
an optimal number of files are written simultaneously. In particular, Lustre file systems function 
well when the number of files is equal to the number of OSTs. 

 
This is a very good method from the systems performance point of view. Unfortunately, from the 
applications point of view, this method requires complex implementation and upkeep in order to 
correctly map file accesses to hardware resources. For example, the application must query 
Lustre to obtain the number of OSTs. That requires using the Lustre API or some other system 
specific library. 

Fortunately, there is a widespread need for this functionality in HPC applications. Over the past 
several years, libraries have emerged which provide a simple interface and automate the 



  
 
 
optimization of file access for a given system. Subsequent sections will provide more 
information. 

2.2. Existing Parallel I/O Libraries 
This sections lists several freely available I/O libraries that can be used on Garnet. Each 
subsection provides a short description of the library, along with links to the project home pages 
and documentation. 

2.2.1.  ADIOS 
• The Adaptable IO System (ADIOS) 

http://www.olcf.ornl.gov/center-projects/adios/ 
• ”The Adaptable IO System (ADIOS) provides a simple, flexible way for scientists to 

describe the data in their code that may need to be written, read, or processed outside of 
the running simulation.”  
Current version: 1.5.0 
Garnet version: 1.5.0 

• ADIOS User’s manual 
http://users.nccs.gov/ pnorbert/ADIOS-UsersManual-1.5.0.pdf 

ADIOS provides functionality built on top of other libraries and file formats described in this 
section. Section 3 describes how to use ADIOS. The information in section 2 will be helpful in 
understanding ADIOS options and configuration. 

2.2.2. MPI I/O 
MPI-2 added the standard I/O interface known as MPI-I/O. To learn the standard, any number of 
tutorials exist. The most widely used resource is the text Using MPI-2: Advanced Features of 
the Message-Passing Interface, by William Gropp, Ewing Lusk, and Rajeev Thakur. Examples 
from the text and errata can be found here: 
http://www.mcs.anl.gov/research/projects/mpi/usingmpi2/ 

As for implementations of the standard, Garnet uses the MPICH-2 implementation by default, 
with MPICH-1.2 and OpenMPI available as alternatives. 

• MPICH Home  
http://www.mpich.org/ 

• “MPICH is a high performance and widely portable implementation of the Message 
Passing Interface (MPI) standard.” 

• 2012 Podcast Interview: Rajeev Thakur and Rob Latham, Developers of ROMIO, the 
MPICH I/O implementation 
http://www.rce-cast.com/Podcast/rce-66-romio-mpi-io.html 

• OpenMPI Home  
http://www.open-mpi.org/ 

• “The Open MPI Project is an open source MPI-2 implementation that is developed and 
maintained by a consortium of academic, research, and industry partners.” 

• Video: Scalable and Modular Parallel I/O for Open MPI 
http://www.open-mpi.org/video/?category=internals&watch=Parallel EdgarGabriel 



  
 
 

2.3. Existing Parallel I/O File Formats 
Previous sections have focused on the methods accessing files using parallel I/O. As seen in 
section 2.1, the format of a file or files can impact access methods. For example, recall the case 
of writing N files from N processes, then reading N files into M /= N processes. 

This section covers several standard file formats that are often used in HPC applications. These 
file formats provide advanced storage and common functionality between applications. 

2.3.1. HDF5 
• HDF5 (Hierarchical Data Format) 

http://www.hdfgroup.org/HDF5/ 
• “HDF5 is a data model, library, and file format for storing and managing data. It supports 

an unlimited variety of datatypes, and is designed for flexible and efficient I/O and for 
high volume and complex data.” 
Current version: 1.8.11 
Garnet version: 1.8.8 

• Parallel Programming with HDF5 
http://www.hdfgroup.org/HDF5/Tutor/pprog.html 

2.3.2. XDMF 
• XDMF (eXtensible Data Model and Format) 

http://www.xdmf.org 
• “The need for a standardized method to exchange scientific data between High 

Performance Comput- ing codes and tools lead to the development of the eXtensible 
Data Model and Format (XDMF). Uses for XDMF range from a standard format used by 
HPC codes to take advantage of widely used visual- ization programs like ParaView, to 
a mechanism for performing coupled calculations using multiple, previously stand alone 
codes.” 
Current version: N/A 
Garnet version: N/A See XDMF website for instructions on downloading and using their 
libraries. 

• Obtaining XDMF 
http://www.xdmf.org/index.php/Get Xdmf 

2.3.3. NetCDF 
• NetCDF (Network Common Data Form) 

http://www.unidata.ucar.edu/software/netcdf/ 
• “NetCDF is a set of software libraries and self-describing, machine-independent data 

formats that support the creation, access, and sharing of array-oriented scientific data.” 
Current version: 4.3.0 
Garnet version: 4.2.0 

3. ADIOS: The Adaptable IO System 
ADIOS, short for the Adaptive I/O System, is middleware that can greatly improve parallel I/O 
per- formance, simplify parallel I/O coding, and improve code portability. Multiple languages are 
supported by ADIOS, including C, Fortran, Java, Python, and Matlab scripts. 



  
 
 

3.1. Overview of Features 
To use ADIOS, a programmer replaces low level I/O library calls with ADIOS calls in their 
programs. An external XML file is used to select I/O methods and specify which data is written 
to which files. This allows users to choose the best I/O method for their machine’s architecture 
and change the content of their output files without having to rewrite code or support multiple 
low-level I/O libraries. 

ADIOS makes calls to low level I/O libraries, as shown in Figure 1. The I/O methods supported 
by ADIOS include POSIX, MPI-IO, DataSpaces, EVPath, and the Lustre API. If the user is 
writing to a Lustre file system, ADIOS can automatically calculate ideal striping parameters. On 
systems with Infiniband and Cray Gemini networks, ADIOS can optimize network usage and 
reduce network contention.For large scale applications (over 10k cores), ADIOS can improve 
write performance by aggregating data from multiple processes before writing. 

ADIOS reads and writes files in the BP file format, designed specifically to be resilient and 
support delayed consistency for better I/O performance. BP files are meta-data rich and can be 
converted using utilities that come with ADIOS. File conversion targets include the widely used 
HDF5 and NetCDF4 formats, as well as human readable ASCII files. 

ADIOS I/O methods, optimizations, file formats, and language bindings are all discussed in 
greater detail in the ADIOS Users Manuali. 

 
Figure 1. ADIOS is middleware that improves I/O performance and ease of use. It is configured through an XML file without the 
need for recompilation. 

3.2. ADIOS Users and Applications 
ADIOS is being actively developed by the Oak Ridge Leadership Computing Facility for the high 
perfor- mance computing communityii. Users include scientists and engineers at national 
research centers and institutions of higher learnings such as Oak Ridge National Laboratory, 
Sandia National Laboratories, the Engineering Research and Development Center, the 
University of Tennessee, and Georgia Tech, and others. 



  
 
 
The first version, ADIOS 1.0, became available in 2009. As users provided feedback, I/O 
libraries evolved, and new hardware came into use, ADIOS has been revised and updatediii iv. 
The current version as of 2013 is ADIOS 1.5 and future versions are forthcomingv. 

Some of the applications that have benefited from ADIOS are: 

• S3D combustion code 
The S3D codevi has been used for direct numerical simulations of reacting jets in cross 
flow. The computation scaled to an entire Cray XT5, but the I/O portion, using MPI, did 
not. S3D switched to ADIOS 1.0 to improve maintainabilityii. With ADIOS 1.2 they 
achieved to a factor of 15 speedup in S3D runtimevii. Ray Grout commented, “I 
appreciate the clean yet capable interface and that from my perspective, it just works... It 
would have been fairly difficult for us to get this work finished in time for our targeted 
paper deadline using our previous I/O solution, but now I’m confident that we’ll make it 
thanks to ADIOS.”viii 

• QLG2Q 
The OLG2O quantum lattice gas model ix runs on Cray XT5 and on Cray XE6. It did not 
scale beyond 20k cores when using MPI and POSIX. After switching to ADIOS 1.3, the 
code scaled to 110k cores with write and read speeds of roughly 40 GB per second x. 

• RAMGEN 
The CFD solver by Numeca International, used by RAMGEN Power Systems at OLCF, 
was overhauled with many application updates leading to a factor 100 speedup. Testing 
was done on a two body test case with 500 million grid cells and 3840 processes. In 
particular, ADIOS improved code readability and reduced problems with initializations 
and restartsxi. 

• Particle Simulation 
The LAMMPS atomic/molecular simulator uses an ADIOS XML configuration file to 
make specification of input and output simpler for users. 

• XGC Particle Simulator 
The XGC particle simulator was used to model turbulent flow in plasmaxii. The XGC 
Fortran code originally used HDF5 I/O routines. It was an early adopter and testbed for 
ADIOS ii to improve code maintainability. Currently, XGC can checkpoint 200K core 
computations using ADIOS in under 1 minute, while the original I/O methods take over 1 
hourxiii. 

• Fusion Simulations 
GTC was changed eight times to optimize I/O performance. This code was an early 
adopter and test case for ADIOS due to the ease with which I/O methods could be 
changed, allowing one method to be used during debugging and a different method to 
be used in productionxiv. Using ADIOS, several leading fusion codes, XGC-1, GTC, and 
GTS, all scaled to 140K cores on ORNL’s Jaguar XE6 viii. 

• Chimera 
Chimera is an astrophysics code used for supernova simulationxv. The code changed to 
ADIOS 1.0 to allow easy switching between I/O methods vix. 

• Geoscience Simulators 



  
 
 

The M8 earthquake simulator ran on a Cray XT5 using 223k cores. The application 
creators used ADIOS for ease of I/O configuration and to facilitate large volume data 
analysis

xviii

xvi. Other HPC geoscience codes using ADIOS include AWP-ODCxvii and 
SPECFEM3D . 

• Chombo, Adaptive Mesh Refinement 
Chomboxix is an adaptive mesh refinement (AMR) code that uses ADIOS for its parallel 
I/O portion. ADIOS lets users interactively change which data is written to disk without 
recompiling their code. This is advantageous for AMR codes because their users often 
need alter what is written to disk vii. 
 

3.3. Getting Started with ADIOS 
 

On Garnet, ADIOS 1.5 is installed, and can be used by loading the appropriate module: 

 > module load adios 

Garnet also contains sample codes in C, Fortran, Matlab, Python, and Java. These can be 
accessed at: 

 $SAMPLES HOME/parallel-io/ADIOS 

3.3.1. Modifying a C/MPI Program 
The ADIOS User’s Manual contains a chapter which shows all of the steps required to add 
ADIOS to an MPI application written in C. 

• ADIOS User’s Manual 
http://users.nccs.gov/ pnorbert/ADIOS-UsersManual-1.5.0.pdf 
See Chapter 12: C Programming with ADIOS 

A summary of steps required to add ADIOS to a C program on Garnet are: 

1. Load your programming environment module, e.g. ProgEnv-pgi, then load the adios 
module. 

2. Construct an XML file. The ADIOS User’s Manual shows an example of syntax. This file 
will contain information about the programming language, I/O method, variable names, 
and MPI communicator used to coordinate processes. 

3. Use the gpp.py utility (included in ADIOS) to generate a .ch file from the XML file. This 
.ch file includes C code that correlates to the XML file content. It will be included in the 
main body of the code between calls to adios_open and adios_close. See Chapter 10 of 
the ADIOS User’s manual for more information on the content of this file. 

4. Add ADIOS calls. Typically, adios_init and adios_finalize are inserted just after MPI_Init 
and just before MPI_Finalize, respectively. The init function will include the name of the 
XML configuration file and MPI communicator used by ADIOS. Then, to read or write 
data, add calls to adios_open and adios_close enclosing an #include directive referring 
to the .ch file produced in the previous step. 



  
 
 

5. Compile the program and submit your job. 

3.3.2. Modifying ADIOS XML Configuration File for Lustre 
If you followed the example from the ADIOS User’s Manual, you saw XML configurations for 
POSIX and MPI. To change the I/O method from MPI to MPI optimized for the Lustre file 
system, simply change the method field in the XML configuration file. 

<!-- Use regular MPI IO to read/write files --> 
<method group="temperature" method="MPI"/> 
<method group="temperature" method="MPI"/> 

As will be shown below, the ”MPI” method actually performs and scales poorly. For better 
performance, the following changes will improve performance on a modest number of cores: 

<!-- Use MPI optimized for the Lustre file system to read/write files --> 
<method group="temperature" method="MPI_LUSTRE"/> 
<method group="temperature" method="MPI_LUSTRE"/> 

Above a few thousand cores, however, that method may show a slowdown. A more advanced 
method can be configured: 

<!-- Use smarter MPI optimized for the Lustre file system to read/write files --> 
<method group="temperature" method="MPI_AGGR"/> 
<method group="temperature" method="MPI_AGGR"/> 

In some cases, “MPI AGGR” may show somewhat slower performance than other methods due 
to overheads for intelligent logic. However, the case study in Section 4 shows best performance 
at all scales with this method. As shown, it is relatively simple to switch methods to find the best 
match for your application. Note that in Section 4, the old name “MPI AMR” is used. As of 
ADIOS 1.5, this was changed to “MPI AGGR”. 

4. Case Study: ADIOS Performance On 10K Cores Of Garnet 

A PETTT Pre-Planned Effort (PPE) is in process to run a simulation test case on the new 
Garnet system using more than 100,000 cores. In preparation for this simulation, several test 
cases were run using up to 10,000 cores on Garnet before it was taken down for the upgrade. 
The simulation runs George Vahala’s Bose-Einstein Condensate (BEC) code using advanced 
qubit algorithms. The BEC code is run on a standard 3D Cartesian grid. The resolution of the 
grid increases with the number of cores, i.e. there are a fixed number of grid points per core. 
This leads to a constant volume of output data per core with total output data increasing linearly 
with core count. Essentially it is a weak scaling study for writing to disc. 

4.1. Methodology 
The initial tests on Garnet focused on identifying the most efficient I/O system for large scale 
implementation. Five different methods were analyzed, four of which were based on the ADIOS 
libraries. 

1. Smart POSIX (non-ADIOS) 



  
 
 

2. ADIOS POSIX 
3. ADIOS MPI-IO 
4. ADIOS MPI-Lustre 
5. ADIOS MPI-AMR (renamed MPI-AGGR in ADIOS 1.5) 

ADIOS has been successfully implemented on system such as the DoE’s Jaguar for simulations 
up to 250,000 cores. Additionally, ADIOS allows the user to quickly change I/O methods without 
significant effort. This allowed the team to test different transport methods quickly. 

4.1.1. Building and Installing On Garnet 
In order to utilize the ADIOS libraries, they first needed to be installed on Garnet. Version 1.4.1 
of the ADIOS system was the current version at the time of installation. It was configured using 
the directions in the ADIOS User Manual, however there were a few conditions unique to 
Garnet. 

First, even with HDF5 and NetCDF modules loaded, the configure script needed to be manually 
pointed to the locations for all libraries and include files. Once the locations of the HDF5, 
NetCDF and Lustre libraries were known, compilation and installation were performed without 
any errors and took relatively little time. 

Two versions of the ADIOS libraries were created, one for the PGI compiler environment and a 
second for both the Cray and GNU compiler environments. The newest version released in 
June 2013 of ADIOS is 1.5 and it utilizes the CMake system which may resolve the issues the 
PETTT team experienced building ADIOS. Once built, all features of ADIOS worked as 
expected. 

4.1.2. Description of Five I/O Methods 
Smart POSIX is a standalone library previously developed for use in the BEC code by a 
member of the PETTT PPE team. It is very similar to traditional POSIX where each MPI task 
writes its own file. There is some compression of data and better usage of MPI communicators 
compared to traditional POSIX I/O. 

The four methods utilizing the ADIOS libraries were POSIX, MPI-IO, MPI-Lustre and MPI-AMR. 
ADIOS POSIX is essentially traditional POSIX. One file is generated per MPI task. There is 
some performance enhancement over traditional POSIX due to the ADIOS buffering system. 
Similarly, ADIOS MPI-IO is very similar to traditional MPI-IO where one file is generated for all 
tasks. Again, some performance increase can be expected due to ADIOS buffering. 

ADIOS MPI-Lustre is the first method to truly take advantage of the ADIOS system. In this 
method, the ADOIS libraries interact with the Lustre API in order to take advantage of stripes 
and strides. It generates one file for all tasks but utilizes both the ADIOS buffering and Lustre 
striping systems. 

The final method is the ADIOS MPI-AMR and is based on the MPI-Lustre system. The main 
difference here is that one file is written per Lustre OST. ADIOS utilizes a user defined number 
of cores to aggregate and schedule the data to be written. ADIOS includes metadata in the files 
so that the multiple files from all of the OSTs have an internal organization. This all occurs as a 



  
 
 
background task, so the aggregation cores can still be utilized for computation. The name of this 
method has been changed in the current version of ADIOS to MPI-AGGR to better reflect the 
advantages of aggregation. 

4.2. Throughput Results 
Figure 2 summarizes the mean throughput for each of the methods tested by the PETTT team. 
ADIOS MPI-AMR gives the highest mean throughput for all tests. It scales better than all other 
methods to 10240 cores. It also has the fastest performance at low core counts, although the 
ADIOS POSIX is close at 1728. If a code had a low core count and happened to be writing files 
that were close in size to the Lustre stripe size, it is conceivable that traditional POSIX could 
achieve similar results. Using the ADIOS libraries, however, the user is always be guaranteed to 
be using the Lustre file system in an optimum manner. 

The benefits of automatic stripe size matching be seen when the ADIOS MPI-Lustre and the 
ADOIS MPI-IO methods are compared. Both methods use MPI-IO to create one file regardless 
of the number of MPI tasks. The difference is that the ADIOS MPI-Lustre format tunes writes to 
the Lustre file system, whereas ADIOS MPI-IO is oblivious to Lustre configuration. ADIOS MPI-
Lustre stops scaling after 4096 cores because the OSTs become overloaded trying to write to 
one large shared file. 

 

Figure 2 Mean throughput for Smart POSIX, ADIOS POSIX, ADIOS MPI-IO, ADIOS MPI-Lustre, and ADIOS MPI-AMR. 

4.3. Summary & Future Work 
Overall, the PETTT team found that ADIOS gives an increase in I/O performance compared to 
previous in-house developed methods. As more advanced ADIOS features are used, 
performance increases. The most advanced method, ADIOS MPI-AMR (now called MPI-AGGR) 
demonstrates the best scalability to 10240 cores. 

These tests will be extended on the new Garnet system to more than 100,000 cores, but its is 
expected that the MPI-AGGR (MPI-AMR) method will provide the best results. 

5. Related External Links 

5.1. DoD Open Source Software Policy Information 
Free software is work already done. The DoD has had a history of misunderstandings about 
taking advantage of this vast resource. HPC development in particular does not need to fall 
victim to the creation of excess work due to misunderstanding. 

• DoD Open Source Software (OSS) FAQ 



  
 
 

http://dodcio.defense.gov/OpenSourceSoftwareFAQ.aspx 
• Clarifying Guidance Regarding Open Source Software, Oct 16, 2009 

http://dodcio.defense.gov/Portals/0/Documents/FOSS/2009OSS.pdf 

5.2. General HPC Current Events 
There is nothing slow about HPC. The news is still new here. 

• HPCWire  
http://www.hpcwire.com/ 
Since 1986 - Covering the Fastest Computers in the World and the People Who Run 
Them 

• InsideHPC 
http://insidehpc.com/ 
Founded on December 28, 2006, insideHPC is a blog that distills news and events in the 
world of HPC and presents them in bite-sized nuggets of helpfulness as a resource for 
supercomputing professionals. 

• RCE Podcast  
http://www.rce-cast.com/ 
Research Computing and Engineering, targets topics relevant to the High Performance 
Computing (HPC) and Research Computing communities. 
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