

from the director . . .

Even though I have been part of the U.S. Army Engineer Research and
Development Center Major Shared Resource Center (ERDC MSRC)
since serving on the source selection team for the original MSRC
contracts in the mid-90s, I only recently have come to appreciate the
challenges that the Director of one of these Centers faces daily. I have
realized during the past 6 months that just as John West indicated in
the last issue of the Resource, that as I serve as the ERDC MSRC
Acting Director, I am “working alongside an incredibly talented team”
and that “it is truly a humbling experience.”

David Stinson
Acting Director, ERDC MSRC

Just as it must always have seemed to past ERDC
MSRC Directors, I too am aware that even during my
short time at the helm, much has been accomplished at
this Center and is continuing to be done so to provide
the support for solutions to Department of Defense
(DoD) problems that are too complex, dangerous, and
expensive to solve any other way than with the use of
high performance computing (HPC). As you read
through the articles in this edition of the Resource, you
will see evidence of this Center’s continual attempt to
stay focused on this important goal.

The Resource articles in this issue help to validate that
we here at ERDC, through the DoD High Performance
Computing Modernization Program (HPCMP), are
dedicated to providing the latest and greatest machines
for HPC, with the latest upgrades we have made to the
Cray XT3 and the purchase of the very powerful Cray
XT4, along with the new Sun/StorageTek SL8500 tape
library for improving our storage capacity.
However, providing these monstrously powerful
machines would be for naught without having the

capability to harness them and get what we need from
them. This is where our awesomely talented workforce
comes in—our Computational Science and Engineering
group (see Multiple Cores article), our folks affiliated
with universities for technology transfer (see CaseMan
article), and our visualization resources that aid DoD
scientists and engineers in getting the most from their
research (see feature article on Field Fortifications).
We also consider it part of our duty to aid in the impor
tant effort of ensuring that we have an intelligent, highly
educated, and trained future workforce. We are
supportive of any effort of reaching out to and support
of students, especially in the fields of science and
mathematics (see Future Generation article).
The bottom line for us is accommodating our users of
this HPC facility. We want to support them in any way
we can and join them in the ultimate dedication of
providing the best support for the warfighter.

About the Cover: The front and back covers show three time-steps of a shock wave impacting a field fortification
(see article, page 2).

Contents

from the director . . .

DYSMAS Benchmark Calculations of In-Air Explosive Effects on Expedient Field
Fortifications
By Michael J. Roth, William F. Heard, and Ryan D. Stinson, ERDC Geotechnical and Structures

Laboratory; and Paul Adams, Kevin George, and Miguel Valenciano, ERDC Data Analysis and

Assessment Center .. 2

Our Newest Addition — The Cray XT4
By Jay Cliburn .. 8

Say Goodbye to Old Systems and Hello to New Storage
By Jay Cliburn .. 9

Getting the Most from Multiple Cores on the XT3
By Tyler Simon.. 10

Lustre: Five Things That Can Make It Work Effectively
By John Salinas .. 13

CFD Made Easy with CaseMan
By Dr. Alan Shih, Marcus Dillavou, Corey Shum, Fredric Dorothy, and Dr. Bharat Soni,

University of Alabama, Birmingham .. 17

Diesel Fuel and High Performance Computing
By Mike Gough ... 23

UGC 2007—“A Bridge to Future Defense”
By Rose J. Dykes ... 25

Next Generation . . .
By Rose J. Dykes

ERDC MSRC Team Members Mentor JSU Graduate Students ... 26

 ERDC MSRC Participates in SAME/Army Engineering and Construction Camp......................... 27

visitors .. 28

acronyms .. 32

training schedule ... 32

ERDC MSRC Resource, Fall 2007 1

DYSMAS Benchmark Calculations of In-Air Explosive
Effects on Expedient Field Fortifications
By Michael J. Roth, William F. Heard, and Ryan D. Stinson, ERDC Geotechnical and Structures
Laboratory; and Paul Adams, Kevin George, and Miguel Valenciano, ERDC Data Analysis and
Assessment Center

High Performance Computing (HPC) helps
protect soldiers in the field by aiding in the
investigation of earth-filled revetment struc
tures that are typical of expedient construc
tion methods used in a hostile field environ
ment for building security check points and
other protective structures.

In support of the U.S. Army Engineer Research and
Development Center (ERDC) survivability and protec
tive structures research, the Survivability Engineering
Branch, Geotechnical and Structures Laboratory, has
conducted extensive studies on the performance of
expedient protective structures constructed and occu
pied by military forces operating in a contingency
environment. Common characteristics of these expedi
ent structures include construction with nontraditional
materials and exposure to a wide range of direct fire,
indirect fire, and blast threats. Because of this, an
understanding of the expected protective performance
requires thorough study of the structures in a variety of
attack conditions.
Over the last decade, one of the most prevalent contin
gency environment protective construction materials
has been HESCO Bastion® revetment walls. Consist
ing of geotextile-lined wire baskets, the HESCO
Bastion® material is transported in a low-weight, low-
volume configuration and is filled with soil once in place
to create a protective revetment wall. The soil-filled
baskets are also often used to construct protective
structures such as observation posts, an example of
which is shown in Figure 1. The observation post
shown is considered to be representative of a typical
contingency environment field fortification used by the
U.S. military in Iraq or Afghanistan.

To investigate the effects of a large explosive detona
tion on this type of structure, ERDC has performed a
combined experimental and numerical research effort.
In two international experiments conducted by the
Australian Defence Force (ADF), ERDC gathered
data on the internal and external pressure environment
resulting from high-yield explosive events, as well as
gathered structural response data to validate assump
tions made in a concurrent modeling and simulation

Figure 1. Observation post

effort. In the modeling and simulation component of the
project, numeric models were built with a computation
fluid dynamics (CFD) code to simulate the experimen
tal conditions and benchmark the computational results
against collected data. With the code results validated,
the numerical models could be used as a “virtual test bed”
to consider the influence of variations in (1) charge
weight, (2) standoff, and (3) relative orientation of
structure to the charge—which would be prohibitive to
do through physical experimentation.
Gemini (Wardlaw et al. 2003), a first-principles CFD
code developed and maintained by the U.S. Naval
Surface Warfare Center (NSWC) at Indian Head, MD,
was selected for use in the numerical efforts. Gemini is
the Eulerian component of the DYSMAS code suite
(McKeown et al. 2004) and is coupled with the
Lagrangian code DYNA-N to perform fully coupled
fluid-structure interaction calculations. Gemini, within
the framework of DYSMAS, has been used in many
instances by ERDC analysts to simulate in-air explosive
events because of the tight coupling algorithm that is
used between the Eulerian and Lagrangian solvers.
However, because the code is maintained by the Navy,
its primary application has been for below-water
simulations; subsequently, little data exist to validate
results for in-air explosions. Therefore, the combined
experimental and numerical effort described here
provided an added benefit of generating benchmark
calculations for Gemini simulation of in-air explosions.

ERDC MSRC Resource, Fall 2007 2

To simplify the computational effort and focus
benchmarking on Gemini, the calculations were limited
to purely Eulerian, and the observation post was
modeled with Gemini’s “blocked cells” option. In
Gemini, blocked cells are treated as rigid material, and
their surface is perfectly reflecting. Representation of
the observation post in this manner was based on an
assumption that because of the structure’s significant
mass, the controlling hazard to occupants would be
driven by internal pressure conditions and not by
structural collapse. This assumption was verified in the
experimental work, in which the structure shown in
Figure 2 experienced internal pressure conditions that
correlated with a high probability of lethality based on
published physiological response data (Cooper 1996).
However, as seen, the structure did not collapse.

Figure 2. Heavily damaged but stable structure

In support of the experimental program, Gemini calcu
lations were performed to simulate the ADF multiton
explosive event, in which multiple field fortifications
were exposed to the resulting blast effects. Gemini
modeling was performed in two separate stages: two-
or three-dimensional (3-D) free-field calculations that
were subsequently mapped into a 3-D model of the
flow field and structure.

Figure 3. Empirical vs. DYSMAS (Gemini) comparison

Initial free-field calculations were performed in a 2-D,
axisymmetric domain with the charge loaded into a
quarter-circular region based at the domain’s origin
(thus representing a hemispherical surface detonation).
The domain was discretized with a gradient mesh, and
the total cell count was approximately 2.6 × 106.
After simulation of the hemispherical detonation, results
were compared with experimental measurements. It
was found that the simulation results did not match the
measured pressure conditions. Peak pressure and max
imum impulse differed by as much as 40 and 25 percent,
respectively.
Simulation results were compared with empirically
determined pressure-distance curves (Hyde 2004),
which have long-been shown to be accurate for
hemispherical charges. Figure 3 indicates good agree
ment was found.

Therefore, to determine the source of disagreement,
the trial records were reviewed. It was found that—
although the charge was initially planned to be a hemi
spherical charge—when built, it was actually in the
shape of two stacked rectangles. Furthermore, instead of

Figure 4. Charge configuration

ERDC MSRC Resource, Fall 2007 3

Figure 5. Simulation of nontypical charge shape and initiation mode

being center-point detonated as is commonly done, the
charge was simultaneously surface-detonated at 36 initi
ation points. Figure 4 shows the charge being constructed.
With the recognition that the experimental charge was
both built and initiated under nontypical conditions, the
free-field calculations were repeated with the expecta
tion of better capturing the overpressure conditions. In
the repeat calculations, both 2- and 3-D domains were
employed.A relatively small but finely discretized 3-D
domain (cell size 3 cm, domain size 9 m by 9 m by 3.5 m)
was used to simulate the detonation with a high level of
fidelity and provide insight on the nonidealized condi
tions influence on the shock front formation. Figure 5
shows expansion of a shock front isosurface in the 3-D
domain, and as seen, the nature of the front is notice
ably different from that expected from an idealized
hemispherical charge.
The free-field calculations were also performed in a
2-D domain to propagate the shock front to the appro
priate standoff with less computational cost than that of
the 3-D domain. In the 2-D domain, the charge was
simulated as two stacked disks, with concentric initia
tion rings used to approximate the initiation points.

Figure 6 compares results from the 2-D domain with an
experimental record in the free field. As seen, the
calculated results reasonably match the experimental
data, with differences in maximum pressure and impulse
of approximately 14 and 7 percent, respectively. The

Figure 6. Experimental vs. DYSMAS
(Gemini) comparison

primary difference noted in the records is the shape of
the wave forms: the experimental record shows a
second peak during the initial decay, whereas the
numeric results do not show this second pressure rise.
To investigate the cause of the difference of wave
forms and why the second rise was not seemingly
captured in the numeric results, the shock front expan
sion prior to arrival at the gage was studied. On review
of the numeric results, it was seen that, in fact, Gemini
did calculate a nontypical shock expansion of similar
nature to that measured in the experiment. As seen in
Figure 7, because of the nontypical charge configuration

Figure 7. Pressure state plots, DYSMAS (Gemini) calculation of nontypical shock front expansion

ERDC MSRC Resource, Fall 2007 4

and means of initiation, at 5.5 msec after detonation,
several distinct wave fronts had formed. Near the
ground surface, a small uniform front had formed
beneath a faster moving, parabolic-shaped front. Above
these, a larger, more uniform front had expanded and
was more characteristic of a shock front that might be
expected from a typical hemispherical charge. At 23.5
msec, the two lower fronts had converged into a single
uniform wave, but the upper front still remained distinct
and had begun to generate a downward moving wave
into the lower, uniform zone. At 52 msec, with the
ground wave front at a standoff approaching that of the
experimental free-field gage, the downward moving
front had reflected off the ground surface and gener
ated a double pressure pulse, as seen in the experimen
tal data. Based on the height of the gage and the timing
of wave coalescence in Gemini, the output point
corresponding to the experimental gage showed only
the uniform wave front formed after the ground
reflection. However, as seen from review of the entire
pressure field, Gemini clearly captured the nontypical
wave expansion measured in the experiment.
With the pressure environment in the free field accu
rately modeled, the 2-D pressure field was mapped into
a 3-D Cartesian domain to calculate conditions in, and
around, the structure. For the 3-D calculations, the
domain was approximately 23.1 m (direction of shock
flow) by 4.8 m (transverse to shock flow) by 3.6 m
(height). Discretization of the domain resulted in a total
cell count of approximately 1.9 × 106 cells. The
structure (rendered view) during engulfment by a shock
isosurface is shown in Figure 8.

In both of the ADF trials, ERDC constructed multiple
structures with various standoffs from—and orienta
tions to—the charge. Active instrumentation was used
to measure the overpressure environment at specific
locations within the structures, which was in turn used
for comparison with Gemini results. Four pressure-time
records from the experimental events are shown in
Figure 9, along with time-domain shifted Gemini-
calculated conditions at the same locations. Shifts of
the Gemini data (in time-domain only) were minor,
ranging from 5 to 8 percent, and were done to provide
more direct comparison of the calculated versus
experimental wave forms. As seen, Gemini closely
matched all aspects of the pressure-time conditions.
The difference (between experimental and computed)
in peak pressure for these records ranged between 4
and 26 percent, and maximum impulse difference
ranged between 2 and 18 percent. Furthermore,
exceptionally close agreement was seen in the experi
mental and computed wave forms, showing that Gemini
accurately captured the nature of shock flow into—and
through—the structures.
Figure 9 shows that overpressure conditions computed
by Gemini can be output at specific locations, providing
detailed flow field information at discrete locations.
However, state-plots (e.g., pressure, density) are also
available in the Gemini output, providing more compre
hensive insight into the conditions impinging on the
structure and its occupants. Figure 10 shows pressure
conditions during engulfment of an experimental
structure. Shown is a cut-away view of the structure,
with pressure contours plotted on the internal and

Figure 8. Shock isosurface engulfment of structure (with structure rendered)

ERDC MSRC Resource, Fall 2007 5

 Figure 9. Internal conditions - experimental vs. DYSMAS (Gemini) results

Figure 10. Visualization of structure engulfment, pressure contours

ERDC MSRC Resource, Fall 2007
 6

EEEEExxxxxppppplllllooooosssssiiiiiooooonnnnn ----- FFFFFiiiiieeeeelllllddddd FFFFFororororortiftiftiftiftifiiiiicccccaaaaation Experimenttion Experimenttion Experimenttion Experimenttion Experiment

external structure faces. From this, the nature of the
shock flow in, and around, the structure can be clearly
seen. Furthermore, detailed studies of the flow condi
tions can be made, and if desired, the structure configu
rations could be modified in an attempt to improve
survivability of position occupants.
This benchmarking effort shows that Gemini was
capable of accurately modeling the in-air detonated
free-field effects of both an idealized hemispherical
charge and a nontypical charge configuration initiated
with a multipoint surface detonation scheme. Mapping
the free-field results into a 3-D domain containing the
experimental structure further showed that Gemini
accurately captured the internal pressure conditions—
both in terms of pressure magnitude as well as nature
of the wave forms. Only four internal pressure-time
records were presented to evidence the accuracy of
Gemini’s calculations; however, additional data were
available to researchers for more extensive compari
son. Although in some cases the peak pressure magni
tude agreement was not as close as that shown here,
the computed wave forms closely agreed with the
experimentally measured. Because of the wave form
agreement, regardless of maximum pressure differ
ences, it is believed that Gemini accurately computed

the fundamental characteristics of the shock flow
through the structures, thereby showing strong indica
tion of its capability to accurately model complex shock
flow resulting from in-air explosive events. Therefore,
based on the results of this effort, it is recommended
that additional opportunities be identified and exploited
to make further experimental/numerical comparisons
and extend the code’s validation data set in applications
of Army interest.

Acknowledgment
Permission to publish by the Director, Geotechnical and
Structures Laboratory, is gratefully acknowledged.

References
Cooper, P. W. (1996). Explosives Engineering. Wiley-VCH.
New York.
Hyde, D. W. (2004). “ConWep, Version 2.1.0.3” (computer
program), IBM-PC, U.S.Army Engineer Research and
Development Center, Vicksburg, MS.
McKeown, R., et al. (2004). “Development and Evaluation of
DYSMAS Hydrocode for Predicting Underwater Explosion
Effects,” IHTR 2494, 13 February 2004.
Wardlaw, A. B., et al. (2003). “The Gemini Euler Solver for the
Coupled Simulation on Underwater Explosions,” IHTR 2500,
24 November 2003.

ERDC MSRC Resource, Fall 2007 7

Our Newest Addition — The Cray XT4

By Jay Cliburn

ERDC is adding in
80,000,000,000,000 FLOPS for
DoD users with the Cray XT4.

The XT4 hostname will be Jade and will
be housed in 24 equipment cabinets. In
its final configuration, Jade will consist
of 538 compute blades, each containing
four quad-core 2.3 GHz Opterons, for a
total of 8,608 compute cores. (The
2.3 GHz clock speed is an estimate and
depends upon what’s available from
AMD at the time of Jade’s delivery.)
Each compute node will run Linux –
unlike Sapphire, which runs Catamount
on its compute nodes – and will be pop
ulated with 8 GB of memory, thus maintaining the 2 GB
per core memory-to-CPU ratio found today on Sap
phire. The system will contain over 370 terabytes of
Lustre workspace disk storage. Jade also sports an
improved internal node interconnect, the SeaStar2,
which provides a sustained bandwidth of over 6 GB/
sec. (By comparison, the older SeaStar on Sapphire
provides 4 GB/sec of sustained bandwidth.)
Jade will be delivered with 76 dual-core service and
I/O nodes, of which 32 will be configured for user
interaction according to the table below.

Pretty in camo: Conceptual rendering of Jade

The ERDC MSRC is excited about the computational
capacity offered by this powerful new system and
looks forward to bringing it into production service in
the spring of 2008 to meet the needs of its users.
Please don’t hesitate to contact the Consolidated
Customer Assistance Center (CCAC) if you have
questions or need additional information. CCAC can be
reached at help@CCAC.hpc.mil or telephone 1-877
222-2039.

ERDC MSRC Resource, Fall 2007 8

mailto:help@CCAC.hpc.mil

Say Goodbye to Old Systems and Hello to New Storage

By Jay Cliburn

In the past few months,
the ERDC MSRC has bid
farewell to one very familiar
system and significantly
modified another not-so
well-known system.

Most noticeably, we’ve decommis
sioned the SGI Origin 3900 system
known as Ruby. Ruby was actually
comprised of multiple systems: two
512-processor nodes called Silicon
and Sand, and a front-end login host
that was the actual physical host called Ruby. These
systems were kept in service longer than scheduled to
accommodate user needs. (There were other smaller
systems, too, but they had support roles with which
users never knowingly interacted.) Silicon and Sand
entered service at the ERDC MSRC in fall of 2003 and
proved to be remarkably stable workhorses, routinely
exceeding 90 percent monthly utilization and providing
users with a vast quantity of shared memory.
In a configuration change much less visible to the user
community, but significant nonetheless, the ERDC
MSRC replaced its three StorageTek 9310 tape silos
with a new, single Sun/StorageTek SL8500 tape library

SGI Origin 3900

in May 2007. The old 9310 silos had been on the floor
for well over a decade and contained a total of about
16,500 slots for tape cartridges. The new silo contains
“just” 10,000 slots, but in a significantly smaller foot
print. Each tape cartridge in the new silo holds over
twice as much data as its predecessor (500 gigabytes
versus 200 gigabytes).
The ERDC MSRC is pleased to provide new mass
storage capacity to its users. If you have questions or
comments, please contact the Consolidated Customer
Assistance Center (CCAC) at help@CCAC.hpc.mil
or telephone 1-877-222-2039.

StorageTek 9310 tape silos Sun/StorageTek SL8500 tape library

ERDC MSRC Resource, Fall 2007 9

mailto:help@CCAC.hpc.mil

Getting the Most from Multiple Cores on the XT3

By Tyler Simon

Sapphire has become a multicore system.
Find out below how to improve your code
performance.

Commodity multicore chips have become an integral
part of high performance computing architectures. As
processor vendors move towards concurrent process
execution on a single chip, the software developers for
these systems can no longer rely on increased proces
sor frequency to lead to increased application perfor
mance. Rewriting an application to take advantage of
multicore chip architecture is a good start at improving
performance. However, users must also become more
aware of the resource demands of the multicore
computing system and runtime environment for best
code performance. This article provides a brief over
view of three areas where a developer or user can
potentially improve application performance on the
ERDC Cray XT3 (Sapphire) and other multicore
systems. Additionally, by understanding some common
areas of contention and performance bottlenecks in
existing dual-core hardware, users may be better
prepared to make more detailed improvements to their
code and prepare for the upcoming quad-core Cray
XT4 to be installed at ERDC. The following recom
mendations come from experiences running codes on
the single- and dual-core Sapphire.

Sapphire Overview
Currently, Sapphire contains 4,160 processing nodes
with each node running a 64-bit, 2.6 GHz dual-core
Opteron processor with 4 GB dedicated memory. The
nodes are connected to each other in a three dimen
sional (3-D) torus using a Hyper Transport link with a
dedicated Cray SeaStar communications engine.
Sapphire is rated at 42.6 TFLOPS and contains 374 TB
of Fibre Channel RAID disk storage. Sapphire runs the
UNICOS 1.5.39 operating system with the Catamount
microkernel running on the compute nodes. Service
nodes run a full SuSE Linux distribution with Cray XT3
extensions. The pre-upgrade system specifications
included the 1.4.43 version of UNICOS and 4,096
nodes of 2.6 GHz AMD Opteron processors, with one
core per node and 2 GB of user-accessible memory.

Areas of Contention and Solutions
Memory Contention at the Chip Level
In order to get a code to perform better on multicore
processors, an understanding of Sapphire’s dual-core

Figure 1. Single- and dual-core memory read and write
access time for variable block size

memory hierarchy will be helpful. On Sapphire the L1
cache is divided into a 64K data cache and 64K
instructions cache, with 1 MB of L2 cache. Each core
has access to a single pool of main memory; thus the
main memory bus becomes a main point of contention,
especially for memory-intensive codes, as each core
must be scheduled for individual memory access.
Figure 1 shows main memory read+write access time
on the single- and dual-core chips on Sapphire. The test
increased the cache stride size in bytes (x axis) and
calculated the read and write time. Figure 1 depicts the
dual-core memory access time is greater than single
core, thus quantifying the effect of memory contention
on Sapphire’s AMD Opteron chips.
As a developer, off-chip memory contention may be
alleviated by fitting arrays primarily into cache. When
this is not feasible or the array size is larger than cache,
the users should reduce the number of cores that
access such data. Thus a process scheduling solution
may benefit code execution time by specifically limiting
or interleaving core-to-memory access.

Process Affinity at the OS Level
Each dual-core node retains a single operating-system
image; thus each execution thread must be assigned an
execution core and scheduled by the OS. This process
can be examined by looking at the current OS schedul
ing algorithm and by taking advantage of process
affinity. Process affinity allows a user to map a process
ID (pid) to a core for execution. A user can gather
which SMP scheduler the current OS is using via the
sched_getscheduler(pid) function. A user
can view the core a process is intended on running by

ERDC MSRC Resource, Fall 2007 10

viewing the process affinity mask using
sched_getaffinity (pid, len,

&mask) where &mask is returned as the
core umask of the process ID and
(sched_setaffinity (pid,
len, &mask) will allow the user to set
this value to the appropriate core. A more
dynamic or adaptive approach to process
affinity may provide more efficient use of
the additional core.

MPI Process Placement at Runtime
One of the effects of running MPI over
multicore nodes is that MPI ranks have the
chance of being placed on the same node,
thereby improving the bandwidth for those
particular ranks. The difficulty then becomes
how to properly map MPI ranks to execution
cores for optimal throughput and reduced overall job
runtime. As an example of this behavior, Figure 2
demonstrates the throughput between ranks in a
persistent blocking all-to-all MPI on the 2.6 Dual Core
AMD Opteron system at the Arctic Region
Supercomputing Center (ARSC). Each node on this
system contains 8 dual-core chips. The increased
throughput is visible here in groups of 16, as expected.
A user can exploit this behavior only at runtime, as the
physical node location is often non-deterministic. I
propose the following method, which can be used for
taking advantage of increased internode bandwidth for
the ERDC XT3.
On Sapphire, once a user submits a job, it is generally
run on any available processors, whether they are
contiguous or not. Thus users have little control of their
MPI rank to compute node placement. Users may
specify a MPICH_RANK_REORDER_METHOD in
their batch submission script to attempt different
process placement strategies, but any
benefits will depend on the communication
patterns of the code. For example, Figure 3
shows GAMESS runtime is improved as a
symmetric multiprocessor and folder rank
reordering method is used, as opposed to
the default round-robin placement strategy.
Taking this idea even further, users can
specify any rank ordering the setting
MPICH_RANK_REORDER_
METHOD=3 in the batch submission
script. At job runtime the file

Figure 2. Examines the MPI bandwidth between ranks
for a 64-node run on the ARSC Midnight Cluster

“MPICH_RANK_ORDER will be read, and ranks will
be placed in the order specified, such as “0,1,3,2” for a
4-node job.
For codes with specific data-locality needs, Sapphire
allows for “yod” to be executed with an ordered list of
nodes using the “yod –list” option. Thus the user can
combine the MPI_RANK_ORDER file with a specified
list of nodes to run on a more custom process topology. In
the following batch script, the first yod runs a program
that prints out the node id’s and MPI ranks to a file. Users
then can perform some selection criteria on how they
want those nodes ordered as well as saving their associ
ated ranks into the MPI_RANK_REORDER file. This
example demonstrated just a sort routine based on the
numerical value of the fourth column. The script then
waits 5 seconds for the job to complete, creates the list
of nodes, and submits another job with “myexecutable”
for the modified topology.

Figure 3. MPI process placement

ERDC MSRC Resource, Fall 2007 11

###Pretest code to generate node id’s

yod -VN -np 4 ./nodelist >>nodelist_4_$PBS_JOBID.in

###Reorder based on some metric!

cat nodelist_4_$PBS_JOBID.in | sort -nrk4 | head -4 | > MPICH_RANK_ORDER

###wait for yod to cleanup

sleep 5

nodelist=(`cat nodelist_4_$PBS_JOBID.in | sort -nrk4 | head

-4 | awk '{printf("%d,", $1); }'`)

###Add your executable here!

export MPICH_RANK_REORDER_METHOD=3

yod -list ${nodelist[@]} -VN -np 4 ./myexecutable >reorder_$PBS_JOBID.out

Conclusions
Some codes tend to do better on multicore systems
with little to no modification; these tend to be codes
that have a little memory contention or have non
uniform process needs, such as in GAMESS. Figure 4
shows a comparison of runtimes on single- and dual-
core Sapphire. LAMMPS is computationally intensive
with little memory access. The codes used to evaluate
the performance of the XT3 are a subset of the bench
marks that are used in the High Performance Comput
ing Modernization Program (HPCMP) Technical
Insertion (TI) procurement process and also represent
the HPCMP computational technology areas. Each
code was executed with a fixed problem size on the

single- and dual-core Sapphire nodes, with the depen
dent variable being runtime. Each code was compiled
with the PGI compilers with the default compiler
optimization levels set “-02”. The improvement seen in
GAMESS is due to the processor upgrade as well as a
code revision, from R4 to R6.
In conclusion, multicore architectures are becoming
more common in high performance computing environ
ments, and more traditional methods of code perfor
mance gain will not work as well for current HPC
computing environments. Thus, developers need to
educate themselves in these new processor and
compiler technologies and customize their runtime and
code development practices around them.

Figure 4. Ratio of single- and dual-core application runtimes

ERDC MSRC Resource, Fall 2007 12

http:nodelist_4_$PBS_JOBID.in
http:nodelist_4_$PBS_JOBID.in
http:nodelist_4_$PBS_JOBID.in

Lustre: Five Things That Can Make it Work Effectively
By John Salinas

The last time I heard John West give a talk, he spoke about how we need to make supercomputing easier for
users. Since the room was full of bright people, I felt confident that they would go and make this happen while I
went happily back to doing whatever I was doing. But as my week progressed, I kept receiving problems that dealt
with how users were using the Lustre file systems on Sapphire (ERDC Cray XT3). Many aspects of what they
were trying to do were ill-suited for the place they were trying to do them – the thought occurred to me that we
might be able to simplify the life of some users if we gave them some basic guidelines on how to use the Lustre
file systems to their advantage. The purpose of this article is to provide information to users that will help them use
Luster file systems more effectively.

Basics of a Lustre File System
Lustre is designed to be a high performance scalable
file system that runs over a wide variety of configura
tion. It is also designed to be easily configured by users
to meet their specific needs. This is a change from
many older file systems that were designed to hide all
the complexity of input output (I/O) operations from
the user (See graphic on the right).

The Lustre implementation on Sapphire has a client
reading and writing data from a Catamount compute
node over the high-speed network to object storage
servers (OSSs) that contain object storage targets
(OSTs). The metadata server (MDS) interacts with the
OSTs and the client to keep track of files, directories,
and file system information. A basic overview looks
something like the following:

The client and the OSSs, which contain OSTs, take
care of the data, file locking, and acknowledgment of
packets being sent back and forth. The OSTs and the
MDS take care of file creation, file status, and recov
ery. Communication between the MDS and the client
ensures concurrency and directory metadata. For more
details on what each component does and what it
connects to, see the Lustre documentation: http://
manual.lustre.org/manual/LustreManual16_HTML/
DynamicHTML-01-1.html.

Choosing a File System
We have established that the Lustre file systems have defaults that are picked up each time a file or directory is
created. These defaults are not as well suited for a wide range of I/O operations as many previous types of file
systems were. It is in the users’ best interest to consider what the defaults are so they know where to run their
code. If this information is not published in a guide, it can be obtained by creating a file on the Lustre file system in
question and then running the following:

lfs --verbose getstripe filename

ERDC MSRC Resource, Fall 2007 13

Printing out information about the defaults would be helpful. The following shows how the file systems on Sapphire
look:

With this information, users can refer to the five basic guidelines below to help decide where to run:
1.	 The basic principle is to use as few stripes as possible to accomplish good performance on the application. The

more stripes that are used, the more overhead, contention, and risk are involved.
2.	 Small ASCII text files need to be buffered and put on one of the Network File Systems (NFSs). The more

small transfers that are done, the more time is taken away from OSTs.
3.	 If one I/O client (one CPU) writes one large file of well-aligned, large I/O, /work2 should be used where the

default stripe size is six. Because the stripe size is six, the pipe to disk is three times that of /work where the
default stripe size is two. This means better performance for a small number of clients writing one file.

4.	 If multiple files are reading/writing I/O, then the default stripe of two on /work will likely be the best option, as
two OSTs are provided for each file.

5.	 If a large number of files are opened for reading/writing and they all need a high performance file system,
/work2 is used if the number is less than 192, and /work is used if the number of open files is between 192 and
443. The formula is to try and not use more than ~4 times the number of OSTs on the system. If there is a
need to run over 444 files, turning off striping is suggested by using lfs setstripe testfilename 0 0 1
(file name stripe size, start OST and stripe count).

For specific examples, see the Sapphire I/O User Guide, which is on the ERDC MSRC Web site at
www.erdc.hpc.mil.

Configuring Lustre
Since most applications have many different I/O operations and files, it is unlikely that any one file system will
have defaults that will work well for every file. Generally, users want to find their most I/O-intensive files and find
the file system that best meets those needs. Then they can make files and directories that meet the needs of their
other files. Users can select lfs setstripe to change the file system defaults to suit their needs:
lfs setstripe largefile 0 -1 4

lfs setstripe smallfile1 0 -1 2

...

lfs setstripe smallfile10 0 -1 2

ERDC MSRC Resource, Fall 2007 14

http:www.erdc.hpc.mil

In this example, lfs setstripe is used to create a file called largefile with a default stripe size (1 MB), a
default start OST (rarely desirable to change this), and a default count of four OSTs. The second file would be
created called smallfile with a default stripe size and
start OSTs, but a default of two OSTs being used.
Using this same process, users could create 10 files that
are all like this, having 11 files, one with a stripe count
of four, the rest with stripe counts of two. If users were
running on /work on Sapphire, they would only have to
change the default for largefile to use four OSTs,
and the rest could pick up the default of two OSTs. To
the right is a basic chart to help give guidelines on how
many OSTs to use per file.
The basic rule of thumb is with multiple files that are all under ~12 GB, the default stripe count of two on /work is
a good default. The goal should be to set up each run with file system options that will be the best for each file.
Remember that OSTs are a shared resource. If an application uses them poorly, multiple users can be affected.

Performance Information
Cray PAT Setup
Cray provides performance analysis tools that can help users better understand their application. However, they
behave differently on a Lustre file system, such as /work, from an NFS such as /u. Multiple processor jobs require
the ability to do record-locking. This means that if users are running any parallel applications, they need to run
them for either /work or /work2. Also, the NFSs have a limit of 1,024 files that can be opened at the same time.
To get around this, users should run from a Lustre file system (/work or /work2). If it is not possible to run the
code on a Lustre file system, then users can set PAT_RT_EXPFILE_DIR runtime environment variable to
redirect CrayPat output to a target directory on the Lustre file system:

export PAT_RT_EXPFILE_DIR=/work/username/dirname

Using Pat Build and Pat Report
The first step is to instrument the code using the -g trace group option to select a relevant experiment. The options
for I/O are as follows:

(FILE *) construct

module load craypat

(remember pat_build needs access to .o files)

pat_build -g io IOR

ls -lart IOR IOR+pat

-rwxr---- 1 jsalinas erdcssta 12028665 Sep 10 11:57 IOR

-rwxr---- 1 jsalinas erdcssta 12263601 Sep 10 11:57 IOR+pat

ERDC MSRC Resource, Fall 2007 15

The second part is to run the program qsub to submit
The report will give informationwith yod ./IOR.exe-instr. After the job completes,
on how long it took to write some-run pat_report.
thing, how much I/O was done,

pat_report -O write_stats IOR.exe-instr+136
 what the rate was, etc. This is
(also a read_stats)
 often helpful if combined with

Data file 24/24: [....................]
 other pat_build -g tracegroup
CrayPat/X: Version 3.0 Revision 210 (xf 73)
 options to find out what percent-
06/20/06 16:28:30
 age of time is spent where.
Experiment: trace

 ...etc...

If running with Iobuf, users can get it to tell them what it knows about the files it has been monitoring:

% setenv IOBUF_PARAMS '*:verbose'

% ftest2 input2

 I/O time 15.32200

 Compute time 53.26200

 Total time 68.58400

 I/O time per iteration 0.1532200

 Compute time per iteration 0.5326200

 Total time per iteration 0.6858400

 Total I/O (bytes) 800000000

 I/O rate (MB/s) 49.79373

 File "input2"

 Calls Seconds Megabytes Megabytes/sec

 Open 1 0.000006

 Read 201 15.318910 762.940216 49.803818

 Close 1 0.000006

 Total 203 15.318923 762.940216 49.803778

 Sys Read 49 78.300950 762.940216 9.743690

ERDC MSRC Resource, Fall 2007 16

CFD Made Easy with CaseMan
By Dr. Alan Shih, Marcus Dillavou, Corey Shum, Fredric Dorothy, and Dr. Bharat Soni, University of
Alabama, Birmingham

CaseMan takes care of all the details for the
HPC user.

With the advent of computer hardware and numerical
algorithms, computational fluid dynamics (CFD) has
become a reliable and effective tool for performance
prediction in the design selection process. It also holds
great potential for design optimization for large-scale
and complex designs. It can be used to acquire a large
number of design points that traditionally relied upon
expensive and tedious experiments. However, despite
all the potential that CFD has for better designs in a
more cost-effective manner, it is still hampered by the
need for large amounts of central processing unit
(CPU) time on a sophisticated high performance
computing (HPC) environment to iteratively solve a set
of nonlinear governing equations called the Navier-
Stokes equations for a single-phase flow. When chemi
cal reaction or other more sophisticated physics models
are also needed for complex flow fields, such demand
for CPU time increases further. CFD solvers also

require a user to have fairly extensive experience and
knowledge in order to use them correctly and effec
tively. This poses major challenges in terms of accu
racy, throughput, and cost-efficiency when using a
CFD tool to acquire important performance data.
Compounded with these challenges are the less trivial
Linux/Unix working environments and job queuing
systems on the HPC systems on which CFD cases are
usually calculated. This is especially challenging for
most of the novice CFD users who are more familiar
with the single-user, graphics-driven Windows environ
ment instead of the command-based and script-based
Linux/Unix operating systems.
Accuracy improvement, throughput increase, turn
around time, and cost reduction are the key challenges
to CFD use in the design process. Solution throughput
must be significantly improved in the generation of
aerodynamics, propulsion, and fluid dynamics simula
tions that involve parametric and sensitivity design
studies. Such parametric and sensitivity studies require
a large number of CFD simulation runs. However,

Flow Solver Builder module allows the user to specify the variable types and names
that the flow solver will need. It can be used to specify the value ranges to prevent

users unknowingly specifying invalid numbers

ERDC MSRC Resource, Fall 2007 17

performing a CFD simulation is a challenging problem
for both novice and experienced users, as they must
deal with the preparation of the simulations by specify
ing different input parameters; the complexity of
running these simulations on different environments of
the DoD Major Shared Resource Center (MSRC)
HPC systems; and managing the output produced by
these simulations. Despite the fact that most of the
CFD codes used by DoD users represent state-of-the
art technologies with excellent parallel performance,
the current overall simulation process falls short of
achieving the required throughput. A productivity
enhancing toolkit called “CaseMan,” supported under
the DoD High Performance Computing Modernization
Program (HPCMP) User Productivity Enhancement
and Technology Transfer (PET) program (Project
CFD-KY7-001), is currently under development with
the alpha version available to the DoD user community.
This framework allows the user to prepare, submit,
monitor, and manage a large number of CFD simula
tions on the DoD MSRC HPC systems and other non-
DoD cluster systems.

Overview of CaseMan
CaseMan is a tool designed to make setting up, submit
ting, and monitoring CFD jobs simple and easy. To
achieve this, CaseMan abstracts out solvers and

computing environments and only presents them to the
user in a high-level, intuitive way. No longer do users
need to edit complex input files, write submission
scripts, or learn the intricacies of each solver and
environment. Instead, CaseMan takes care of all these
details for the user. The immediate impact is to allow
the user to quickly prepare the simulation input files and
make complex supercomputing tasks associated with
CFD much more user friendly, as CaseMan shields the
user from the complexity of utilizing HPC systems.
On startup, the user selects which solver to set up. A
simple interface with all the necessary parameters the
user needs to input is presented. The interface by
default shows short descriptions of variables instead of
the solver variable name (i.e., Mach Number instead of
MACHNO), but it is possible to switch the view to
show the solver variable names. Each input is fully
documented and is also statically typed, which means
that CaseMan knows what type of variable the user
needs to enter (string, integer, floating point, etc.).
Conditionals are also set up on variables that can cap
values, warn the user about certain situations, or disable
choices that are not valid in certain situations.
CaseMan also has recommended values for each
variable, which gives the user a good starting place.
Users can also set their preferred skill level. If the user
chooses a beginner or intermediate skill level, then

Flow Solver Builder module also allows the user to establish the conditionals relationship

ERDC MSRC Resource, Fall 2007 18

variables that are not required are hidden from the user
to keep the interface simple. This feature enables casual
CFD users to use CFD solvers to obtain important design
performance data without a steep learning curve.
CaseMan also manages all the necessary files for a
job. After setting up a job in CaseMan, the user-entered
input is automatically converted to the input file(s) for
the specified solver. On submission to an HPC system,
all required files, including the input files, grid files,
restart files, and any other file the user has specified,
are automatically transferred to the HPC system. On
the HPC side, the directory structure is automatically
created; all files are automatically written to their
correct location and filename; and submission scripts
are automatically generated. CaseMan interacts with
the queuing system to submit and monitor the jobs and
also knows how to associate with MPI or other re
quired libraries to run the solver. As the job runs,
CaseMan constantly monitors the job status. This
allows CaseMan to warn the user immediately if there
is a failure in the simulation job. CaseMan also extracts
lightweight data as the job runs. These data can be
plotted and visualized in real time on the client machine,
allowing the user to check the convergence history.
These data could also be used to steer the job or stop
the job if it is not converging.

Current Features of CaseMan
In its third year of development, CaseMan will bring
many new changes including the support of more CFD
solvers, more HPC systems, and process control.
Currently, CaseMan supports Overflow2, NXAir,
Hyb3D, Wind, Cobalt, FDNS, and NASCART, with
several others in the testing phases. CaseMan has been
tested on several MSRC HPC systems such as Sap
phire and Ruby at ERDC, Falcon at the Aeronautical
Systems Center, and other systems at the Army
Research Laboratory and Maui High Performance
Computing Center. Other untested MSRC systems
should also work, but CaseMan has not been fully
tested on them yet.
For authentication on MSRC HPC systems, CaseMan
utilizes the User Interface Toolkit (UIT) that was
developed and well-supported by a team of researchers
at ERDC. As deployed last year, the UIT includes a
library of method calls via a secure application pro
gramming interface that enables researchers to develop
their own interfaces to access DoD HPC systems.
More can be found on the UIT at https://www.uit.
hpc.mil/UIT/. UIT handles the entire Kerberos authen
tication process and makes sure all transmissions are
properly encrypted. This relieves CaseMan from this

Job preparation is intuitive and well-labeled. If an invalid input value is provided by the user,

CaseMan will raise the red flag to warn the user

ERDC MSRC Resource, Fall 2007 19

https://www.uit

sensitive security-related task to instead focus on its
case management core features. The UIT will always
guarantee that CaseMan can connect to the MSRC
systems safely and securely. CaseMan can also utilize
SSH for connecting to commodity clusters that UIT
does not support.
Incorporating a new flow solver into the CaseMan
framework has been greatly simplified using the built-in
“Flow Solver Builder” module. This module, which is
hidden by default since only expert users will work with
it, allows expert users to set up the necessary input for

a new solver. For each input value the solver needs, the
expert user can pull from a list of globally shared
attributes. Having a list of globally shared attributes
allows CaseMan to identify shared attributes between
solvers and, in the future, will allow users to easily
migrate from one solver to another similar solver.
As expert users add inputs, they also input documenta
tion, recommended values, and the variable name. The
expert user can also mark inputs as required or not
required. If the value requires a unit, the expert user
specifies the unit in which the solver expects the input

Lightweight data from multiple jobs can be visualized together on a local client
to monitor the progress on the HPC systems

ERDC MSRC Resource, Fall 2007 20

to be. CaseMan will automatically convert the value the
user specifies into the unit the solver requires. If the
input has specific requirements, conditionals can be
added to it. Conditionals allow for capping values,
setting the value in specific cases, disabling or enabling
based on other inputs, or notifying the user of a prob
lem. All of this is set up through a simple graphical
interface.
After all the inputs are set up, it is still necessary to
convert CaseMan's input into an input file that the
solver uses. To simplify this task, CaseMan has a
template system incorporated into it. The template
system at the simplest level allows for variable replace
ment. For example, any variable starting with a '$' is
automatically replaced with the value the user has
entered:
&FlowConditions

 FSMACH = $Mach_Number,

 ALPHA = $Angle_of_Attack,

 ...

/

The template system also incorporates a python-like
language to allow for looping and conditionals. This is
useful for writing out boundary conditions where an
unknown number may be set up by the user. Unfortu
nately, to import a solver input file into CaseMan still
requires writing a small python script to parse the file
although this feature is not required to add a new solver
to CaseMan.

Short Tutorial Using CaseMan
What follows is a short introduction of how a typical
user would interact with CaseMan. Upon opening
CaseMan on the user's workstation, the user is pre
sented with two options: setting up a solver from
scratch or importing an existing solver input file. Often
times, users already have input files for a specific
solver that they use as a template. CaseMan can
import these files, saving the user from having to set up
variables. After importing a file or setting up a solver
from scratch, an interface specific to that solver is
generated. Each input is given a short descriptive name
along with full documentation. Inputs are also grouped
together logically, helping the user quickly identify
attributes.
As the user enters values, CaseMan will validate the
input, notifying the user if the value is invalid. CaseMan
will also disable or enable other choices based on the
values entered. If the user is unsure about what value
an input should use, the user can leave it blank or press
the recommended value button to use the solvers
default or recommended value. It is also possible to
enter multiple values for a single input using the multi
plex feature. A multiplex button next to each input
allows the user to enter multiple values or a range of
values. This is useful for doing a parametric study.
When generating jobs, CaseMan will create a new job
for every possible combination. It can submit all the
jobs as a group and monitor each job separately.

All submitted jobs through CaseMan will be stored in the database so that a user
can manage them easily

ERDC MSRC Resource, Fall 2007 21

Once the user has finished inputting all the values, if
every input has been validated, the job can be prepared.
In this step, the job information is generated. If the user
has set up multiplexing, then multiple jobs will be
generated all under the same case. During this step, the
input is converted into the solver’s native input file
system from CaseMan's template system.

After preparing the job, the user needs to specify which
HPC system to connect to. If the system is at an
MSRC, then UIT is used for authentication; otherwise,
SSH is used. If the HPC system is a supported system,
then all the default configurations are created and the
job should be ready for submission. If the system is not
supported, then on the first time connecting, the user
will be required to enter some initial values about the
queuing system, available solvers, and information on
MPI. After connecting, the user can submit the job.
Upon submission, all specified input files, such as grid
and restart files, are transferred to the HPC system.
CaseMan keeps a database of all the files ever used by
jobs; if any of the files have been used before, they are
not transferred. This keeps from having duplicate files
on the file system. CaseMan also sets up a directory
structure for all the jobs, writes out all the files with the
correct names, generates a submission script specific to
that solver and HPC system, and submits the job to the
queuing system. As the job runs, CaseMan will monitor
the job for failures and will also extract data. The
extracted data can be plotted and viewed on the local
workstation as the job is running. This lets the user
check for convergence or other useful information.
When the job finishes, the user can download the
solution file through CaseMan's interface to the local
workstation for postprocessing and visualization.

Future Plans
CaseMan is currently in its third year of development.
Besides adding more solvers and support for more
computer systems, several major features are planned.
The biggest and most important feature planned is
“process control.” Process control allows conditions to
be set up and to also link multiple solvers or tools
together so that they can be executed in a user-
specified process or sequence. With this feature, very
large complex simulations can be performed. This
feature can be used to start up a simulation with one
solver and, then for those jobs that succeed, finish the
solution with a second solver or the same solver with
different control parameters such as the time-step. Or
this feature could be used to detect when a solution
converges and to stop the simulation. Multiple tools can
be chained together as well in the process control step.
It could allow for a complex geometry optimization loop
between a geometry/grid generator, a flow solver, and
an optimization code. Process control will have a simple
graphical setup to easily allow users to set up the
processes. With the success in CFD applications,
CaseMan also shows potential to be migrated into other
computational technology areas for their case prepara
tion, submission, monitoring, and management. To
request a current version of CaseMan, please visit
http://me.eng.uab.edu/etlab/content/view/17/40/ or
contact Dr. Alan Shih (ashih@uab.edu) at the
University of Alabama at Birmingham.

ERDC MSRC Resource, Fall 2007 22

mailto:ashih@uab.edu
http://me.eng.uab.edu/etlab/content/view/17/40

Diesel Fuel and High Performance Computing

By Mike Gough

What does diesel fuel have to do with high perfor
mance computing? A backup power production facility
will sustain the ERDC MSRC high performance
computing (HPC) center indefinitely in the event of a
utility power failure. Equipment failure not withstanding,
clean fuel is the limiting factor in the ability to provide
backup power to the MSRC. This article introduces
you to our diesel fuel challenge. Since the installation of
the electrical generation capability, ERDC has sus
tained numerous commercial power outages. Most are
short-lived, but in fiscal years (FYs) 1998, 2002, and
2003, unplanned outages lasting 5 to 9 days occurred.
Amazingly, the ERDC MSRC did not lose power during
Hurricane Katrina.

Electrical Power Generation at ERDC
Three Caterpillar diesel generator sets power the
ERDC MSRC backup system. Presently, only two
generators are required to carry the power load.
However, upon the arrival of the Cray XT4 in the first
quarter of FY08, all three generators will be mandatory.
A 24,000 gallon, in-ground fuel tank provides diesel fuel
for the generators. The fuel from this tank is pumped
into smaller “day” tanks located next to the generator
sets. The engine fuel pumps obtain their immediate fuel
from these smaller day tanks.

Fuel Challenge
Diesel engine manufacturers recommend that fuel be
stored for no more than 1 year. Historically, the MSRC
turns its fuel about every 2 years. Since fuel turnover is
never complete, vestiges of old fuel from every fueling
remain in the tank. This incomplete turnover is a major
contributor to stale and contaminated fuel. Water,
environmental pollutants, and problems within the
distribution system also contribute to the problem.
Diesel fuel begins to deteriorate as soon as it is pro
duced. Within 30 days of refining, all diesel fuel begins
a natural process called repolymerization and oxidation.
This process forms varnishes and insoluble gums in the
fuel when the molecules of the fuel lengthen and bond
together. These heavier components drop to the bottom
of the fuel tank and form diesel “sludge” (asphaltene).
The fuel begins to darken in color, smell, and causes
engines to smoke. As these clusters increase in size,
only part of the molecule is burned. The remainder
goes out the exhaust as unburned fuel and smoke. The
increased cluster sizes begin to reduce the flow of fuel
by clogging filters. Fuel filters address the symptom and
not the cause.

Sample results before (left) and after (right) fuel
cleaning

Most fuel contains some water from either condensa
tion or vents. The water threat requires the understand
ing of the added burden placed upon diesel fuel as
opposed to gasoline. Gasoline is only fuel, while diesel
fuel cools and lubricates the injection system. Water
contamination increases engine wear. Water can cause
damage that is more serious when it enters the com
bustion chamber. When it is exposed to the heat of the
combustion chamber (in excess of 2,000 degrees F), it
immediately turns to steam and often explodes the tip
of the injector. It also corrodes tanks, lines, and injec
tors and greatly reduces combustibility.

Fungus and bacteria are also a serious problem.
Bacteria exist at the water and fuel threshold and feed
on nitrogen, sulfur, and iron that may be present in the
fuel. Byproducts of fungus and bacteria contribute to
the diesel sludge in the bottom of the fuel tank. Natural
chemical changes, water accumulation, biological
growth, and accumulation of other pollutants contribute
to the degradation of stored fuel.

Fuel Solution
Until a fuel tank is drained and cleaned, it retains a
vestige of its first gallon of fuel. Therefore, fresh fuel is
contaminated by the old fuel in the tank. Diluting the
good with bad is a losing battle since the fuel will
always be bad until the core problem is addressed.
Policies and procedures must be in place to prevent,
minimize, and remove contaminants from the fuel. The
order of treatment for fuel-related problems begins with
determining the type and amount of contaminants in the
fuel. Water paste and laboratory fuel testing is used for
this stage.

ERDC MSRC Resource, Fall 2007 23

Next, active remedial measures are instituted. Labora
tory test results determine the exact treatment option.
Water contamination is remedied by using fuel water
separators. If microbes are detected, then the use of
biocides is needed. Biocides are similar to "antibiotics"
that kill fuel bacteria. Like human antibiotics, the
biocide must be administered correctly to remove the
contaminants and avoid rebound. If successful, the
effect of the additives, without other measures, is
temporary and will not eliminate the sludge problem.
Next, chemical additives dissolve diesel sludge, gums,
and varnishes that clog filters and injectors. For long-
term prevention, an inline fuel purifier continually cleans
the fuel on demand and reduces the need for ongoing
additive use.
A stand-alone, closed-looped fuel polishing system, the
Diesel Dialysis Solution, removes inorganic contamina
tion. It circulates the fuel through a cleanser that
performs fuel particulate filtration, water separation,
and fuel recirculation. Polishing cleans the fuel, but
does not refurbish stale fuel.
An inline fuel purifier performs similar functions to the
polisher. In real time, it continuously cleans the fuel
before it reaches the engine filters. The native OEM
(original equipment manufacturer) filtration on the
engine is not adequate to process hundreds of thou
sands of gallons of fuel. The fuel purifier is installed
between the main tank and the day tanks. It removes
100 percent of the visible water and up to 98 percent of
dust, dirt, and other normal and natural contaminations
found in the diesel fuel. By removing contamination
immediately before the fuel enters the engine filter
system, the purifier delivers cleaner fuel (virtually
eliminating filter clogging) and therefore greatly extend
ing maintenance intervals.
A modern fuel purifier generally uses a three-stage
purification process employing two well-known fuel
separation principles, centrifugal and coalescence, to
remove water and contaminates down to 10 microns.

By using these two principles, water and other contami
nants are separated from the fuel.

Finally, the most severe situation warrants a complete
fuel removal and replacement. The existing fuel is
“traded” for clean fuel. This option also allows for the
cleaning and inspection of the fuel tank. The replaced
fuel can subsequently be polished and used in other less
sensitive applications.

ERDC MSRC Solution
The ERDC MSRC instituted an aggressive plan to
guarantee clean fuel. This approach begins with the
main tanks and ends at the Caterpillar generators. To
minimize the effect of stale fuel, the MSRC purchased
a state-of-the-art fuel-sampling receptacle that allows
sampling from varying depths. It installed a fuel purifier
system and redundant switchable fuel filters for the
diesel generator sets.
Additionally, the MSRC is putting a fuel management
contract in place that will remove the existing fuel, and
clean and inspect the tank and piping. After the inspec
tion, the tank will be filled with fresh fuel. Finally, the
fuel will be checked on a regular basis and treated
accordingly.
The MSRC is strengthening its fuel quality manage
ment program by instituting a program of weekly water
checks with a probe and paste, monthly fuel sampling
from multiple depths in the tank, and sampling of all
incoming fuel before it enters the main tank.
Reliable HPC cycles are the core product of the
ERDC MSRC HPC Center. Although mundane, diesel
fuel management is one important way that to ensure
that the Center continues to provide computer cycles to
the HPC customers. Through an ongoing process of
constant policy and procedure improvements, the
ERDC MSRC continues to provide cycles to its
important HPC customers.

ERDC MSRC Resource, Fall 2007 24

UGC 2007—“A Bridge to Future Defense”
By Rose J. Dykes

The ERDC MSRC participated with high visibility in
the 17th annual DoD HPCMP Users Group Confer
ence, held in Pittsburgh, Pennsylvania, June 18-22. The
HPCMP presented two ERDC team members with
Hero Awards. Randall Hand won the “Technical
Excellence” category for his leading role in launching
the new HPCMP Data Analysis and Assessment
Center Web site and also for developing the ezVIZ
batch visualization scripting tool. Scotty Swillie won the
“Innovative Management” category for his effort in
developing the User Interface Toolkit (UIT) and the
ezHPC projects.
Five ERDC Team Members made technical
presentations: Dr. Paul Bennett – “Sustained Systems
Performance Test on HPCMP Systems” and “Target
ing CTA-Based Computing to Specific Architectures
Based upon HPCMP Systems Assessment”; Dr. Fred
Tracy – “Testing Parallel Linear Iterative Solvers for
Finite Element Groundwater Flow Problems”; Dr. Gerald
Morris – “Floating-Point Computations on Recon
figurable Computers”; Dr. Ruth Cheng – “Software
Development and Applications of Consistent/Inconsis
tent-Conservative Flux Computation” and “Coupled
Watershed-Nearshore Modeling—Phase II”; and Tyler
Simon – “Application Scalability and Performance on
Multicore Architectures.”
The Conference Poster Session included three ERDC
posters: Paul Adams – “HPCMP Data Analysis and
Assessment Centers”; Scotty Swillie and Glen Brown
ing – “ezHPC: Incorporating a Program-wide, User-
Centered Design Approach into the ezHPC User
Interface”; and Dean Hampton and John Mason – “Do
You Know What Resources Are Offered by the OKC?”

DoD HPCMP presents Innovative Management Award
to Scotty Swillie (left) and Technical Excellence Award

to Randall Hand (right) (Photograph courtesy of
HPCMPO)

Tyler Simon and Dr. Tom Oppe conducted
a tutorial entitled “Performance Programming on HPC
Platforms Utilizing Multicore Processors.” In another
tutorial, Paul Adams presented a hands-on demonstra
tion of software tools for remote visualization and
explained the features of the Data Analysis and As
sessment Center Web site.
With the theme “A Bridge to Future Defense,” the
conference brought together personnel from all of the
HPCMP computing centers and the users of their
resources, providing a forum for communication,
training, and discussion of HPC and its impact on
science and technology.

(From left) Amanda Hines,

Chris Merrill, Owen Eslinger, and

Dean Hampton, all from ERDC,

at Hero Awards Celebration

ERDC MSRC Resource, Fall 2007 25

 Next Generation .. .
By Rose J. Dykes

ERDC MSRC Team Members Mentor JSU Graduate Students
Drs. Gerald R. (Jerry) Morris and Robert S. (Bob)
Maier mentored four Jackson State University (JSU)
graduate students this past summer. All of the students
received funding from the National Science Foundation
Louis Stokes Mississippi Alliance for Minority Partici
pation Bridge to the Doctorate Fellowship Program.
Dr. Morris, a computer scientist at the ERDC MSRC,
served as a mentor for Kevin Pace, Miguel Gates, and
Justin Rice, all receiving master’s degrees in computer
engineering from JSU. Their research focuses on
mapping computational kernels onto reconfigurable
computers.

Tomekia Simeon, who is presently completing final
requirements for her doctoral degree in computational

Kevin Pace presents “Introduction/Overview of VHDL,

Coding, and Necessary ToolSets”

chemistry from JSU, was mentored by Dr. Maier,
Assistant Director for the ERDC MSRC. Simeon
graduated in 2005 from the Computational Center for
Molecular Structure and Interactions at JSU with a
master’s degree in theoretical chemistry. She has been
published in peer-reviewed international journals and
has made over 30 presentations in the United States
and international conferences.

All four students made presentations at a seminar held
in the ERDC Information Technology Laboratory on
August 22.

Tomekia Simeon presents “Computational Insight into
the Chemical and Electronic Properties of Doped C70

Fullerene and Nanoclusters”

Miguel Gates presents “Step-by-Step Derivation Process

Used for the Formation of High-Speed Computations”

Justin Rice presents “Role of Reconfigurable Computers

in the Hardware Development of High-Speed Computations”

ERDC MSRC Resource, Fall 2007 26

ERDC MSRC Participates in SAME/Army Engineering and
Construction Camp
David Stinson and Paul Adams participated in a 1-week
program of the Society of American Military Engineers
(SAME)/Army Engineering and Construction Camp
held in Vicksburg, Mississippi, June 10-16. Stinson
discussed high performance computing and its use in
supporting the U.S warfighter. He then conducted tours
of the ERDC MSRC DoD High Performance Comput
ing Center, talking about each of its computing re
sources and their respective computing capabilities.
Adams discussed scientific visualization and its use in
enabling DoD scientists and engineers in communicat
ing all aspects of their research. He also presented
several visualization demonstrations of DoD research
projects.
Forty high school juniors and seniors comprised this
year’s campers, who were competitively selected to
attend the camp. Some of the criteria for selection are

being on a high school track that will provide a basis for
attendance at an accredited college or university (i.e.,
taking appropriate mathematics and science courses);
expressing intent to pursue a degree in engineering or
associated field; and having demonstrated leadership
characteristics through participation in extracurricular,
sports, and community activities.
According to SAME/Vicksburg Web site, “the Engi
neering and Construction Camp is designed to provide
high school students with an excellent opportunity to
gain hand-on experience in engineering and construc
tion skills in Vicksburg’s wide-ranging engineering
community. This one-week program is supervised by
professional engineers and volunteers from the local
engineering organizations. The campers will gain a
wealth of knowledge about the various career choices
in the fields of engineering and construction.”

David Stinson, ERDC MSRC Acting Director, talks to a few of the 40 SAME/Army Engineering
and Construction campers

ERDC MSRC Resource, Fall 2007 27

visitors

(From left) Dr. Bob Maier, ERDC MSRC Assistant
Director; Felicia Thompson, ERDC Public Affairs Office;
and Frank Ellis, Engineer Inspector General, U.S. Army

Corps of Engineers (USACE) Inspector General’s
Office, August 15

(From left) David Stinson, ERDC MSRC Acting Director;
Dr. Guillermo Riveros, ERDC Information Technology
Laboratory (ITL); and Dr. Felipe Acosta and Professor
Ismael Pagan, University of Puerto Rico-Mayaguez,
August 10

(From left) Dr. James Houston, ERDC Director;

Dr. Alexander MacLachlan, Army Laboratory

Assessment Group; Tony Mancini, USACE Liaison to

Assistant Secretary of the Army for Acquisition,

Logistics, and Technology; and Greg Rottman,

ITL Acting Deputy Director, July 25

ERDC MSRC Resource, Fall 2007 28

 visitors

Dr. Mike Stephens (left), ERDC Data Analysis and
Assessment Center (DAAC) Lead, and Ed Gough
(right), Deputy Commander and Technical Director,
Naval Meteorology and Oceanography Command,
Stennis Space Center, July 17

(From left) Dr. Mitch Erickson, Science and Technology Directorate, Department

of Homeland Security; Dr. Mike Stephens; Dr. Stan Woodson, ERDC

Geotechnical and Structures Laboratory (GSL); Georgette Hlepas, Naval

Postgraduate School, Science, Mathematics and Research for Transformation

program intern, GSL; Mitch Erickson, Department of Homeland Security;

Dr. Mary Ellen Hynes, USACE Headquarters; Dr. Robert Hall, GSL,

July 11

ERDC MSRC Resource, Fall 2007 29

 visitors

(From left) MG Steve Abt, Deputy Chief of Engineers--
Reserve Component; SGM McClinton Brown, USACE,

Washington, D.C.; and David Stinson

(From left) Tom Biddlecome, DAAC; William Laska,
Science and Technology Directorate, Department of
Homeland Security; and Dr. Mike Sharp, ERDC GSL,
June 20

ERDC MSRC Resource, Fall 2007 30

visitors

David Stinson with students from University of Puerto
Rico-Mayaguez, June 19

(From left) David Stinson; BG Todd Semonite,

Commander, North Atlantic Division, New York;

 Greg Rottman; Dr. James Houston;

 COL Rick Jenkins, ERDC Commander

Paula Lindsey, ERDC MSRC, and Dr. Bob Maier
with 20th Engineer Brigade, Fort Bragg,
North Carolina, May 9

ERDC MSRC Resource, Fall 2007 31

acronyms

Below is a list of acronyms commonly used among the DoD HPC community. These acronyms are used through
out the articles in this newsletter.

ADF Australian Defence Force ITL Information Technology Laboratory

AMD Advanced Micro Devices, Inc. JSU Jackson State University

ARSC Arctic Region Supercomputing Center MDS Metadata Server

CCAC Consolidated Customer Assistance MPI Message Passing Interface
Center MSRC Major Shared Resource Center

CFD Computational Fluid Dynamics NFS Network File System
CPU Central Processing Unit NSWC Naval Surface Warfare Center
CTA Computational Technology Area OS Operating System
DAAC Data Analysis and Assessment Center OSS Object Storage Servers
DoD Department of Defense OST Object Storage Target
ERDC Engineer Research and Development

Center
PET User Productivity Enhancement and

Technology Transfer
FY Fiscal Year SAME Society of American Military Engineers
GB Gigabyte TB Terabyte
GHz Gigahertz TFLOPS Trillion Floating-Point Operations per
GSL Geotechnical and Structures Laboratory Second

HPC High Performance Computing TI Technology Insertion

HPCMP HPC Modernization Program UGC Users Group Conference

HPCMPO HPCMP Office UIT User Interface Toolkit

I/O Input/Output USACE U.S. Army Corps of Engineers

training schedule
For the latest on training and on-line registration, one can go

to the User Productivity Enhancement and Technology
Transfer (PET) Online Knowledge Center Web site:

https://okc.erdc.hpc.mil
Questions and comments may be directed to PET

at (601) 634-3131, (601) 634-4024, or
PET-Training@erdc.usace.army.mil

ERDC MSRC Resource, Fall 2007 32

mailto:PET-Training@erdc.usace.army.mil
http:https://okc.erdc.hpc.mil

ERDC MSRC Resource
Editorial Staff

Chief Editor/Technology Transfer Specialist
Rose J. Dykes

Visual Information Specialist
Betty Watson

ERDC MSRC Web site: www.erdc.hpc.mil

Consolidated Customer Assistance Center (CCAC)

E-mail: help@CCAC.hpc.mil

Telephone: 1-877-222-2039

The ERDC MSRC welcomes comments and suggestions regarding the Resource and invites article submissions.

Please send submissions to the above e-mail address.

The contents of this publication are not to be used for advertising, publication, or promotional purposes. Citation of

trade names does not constitute an official endorsement or approval of the use of such commercial products.

Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s)

and do not necessarily reflect the views of the DoD.

Design and layout provided by the Visual Production Center, Information Technology Laboratory, U.S. Army

Engineer Research and Development Center.

Approved for public release; distribution is unlimited.

mailto:help@CCAC.hpc.mil
http:www.erdc.hpc.mil

