


 

 

 
from the director . . .
 
Even though I have been part of the U.S. Army Engineer Research and 
Development Center Major Shared Resource Center (ERDC MSRC) 
since serving on the source selection team for the original MSRC 
contracts in the mid-90s, I only recently have come to appreciate the 
challenges that the Director of one of these Centers faces daily. I have 
realized during the past 6 months that just as John West indicated in 
the last issue of the Resource, that as I serve as the ERDC MSRC 
Acting Director, I am “working alongside an incredibly talented team” 
and that “it is truly a humbling experience.” 

David Stinson 
Acting Director, ERDC MSRC 

Just as it must always have seemed to past ERDC 
MSRC Directors, I too am aware that even during my 
short time at the helm, much has been accomplished at 
this Center and is continuing to be done so to provide 
the support for solutions to Department of Defense 
(DoD) problems that are too complex, dangerous, and 
expensive to solve any other way than with the use of 
high performance computing (HPC). As you read 
through the articles in this edition of the Resource, you 
will see evidence of this Center’s continual attempt to 
stay focused on this important goal. 

The Resource articles in this issue help to validate that 
we here at ERDC, through the DoD High Performance 
Computing Modernization Program (HPCMP), are 
dedicated to providing the latest and greatest machines 
for HPC, with the latest upgrades we have made to the 
Cray XT3 and the purchase of the very powerful Cray 
XT4, along with the new Sun/StorageTek SL8500 tape 
library for improving our storage capacity. 
However, providing these monstrously powerful 
machines would be for naught without having the 

capability to harness them and get what we need from 
them. This is where our awesomely talented workforce 
comes in—our Computational Science and Engineering 
group (see Multiple Cores article), our folks affiliated 
with universities for technology transfer (see CaseMan 
article), and our visualization resources that aid DoD 
scientists and engineers in getting the most from their 
research (see feature article on Field Fortifications). 
We also consider it part of our duty to aid in the impor
tant effort of ensuring that we have an intelligent, highly 
educated, and trained future workforce. We are 
supportive of any effort of reaching out to and support 
of students, especially in the fields of science and 
mathematics (see Future Generation article). 
The bottom line for us is accommodating our users of 
this HPC facility. We want to support them in any way 
we can and join them in the ultimate dedication of 
providing the best support for the warfighter. 

About the Cover: The front and back covers show three time-steps of a shock wave impacting a field fortification 
(see article, page 2). 



 

  

  

  

 

 

     

Contents
 

from the director . . . 

DYSMAS Benchmark Calculations of In-Air Explosive Effects on Expedient Field 
Fortifications 
By Michael J. Roth, William F. Heard, and Ryan D. Stinson, ERDC Geotechnical and Structures
 
Laboratory; and Paul Adams, Kevin George, and Miguel Valenciano, ERDC Data Analysis and
 
Assessment Center ...................................................................................................................................... 2
 

Our Newest Addition — The Cray XT4 
By Jay Cliburn .............................................................................................................................................. 8
 

Say Goodbye to Old Systems and Hello to New Storage 
By Jay Cliburn .............................................................................................................................................. 9
 

Getting the Most from Multiple Cores on the XT3 
By Tyler Simon............................................................................................................................................ 10
 

Lustre: Five Things That Can Make It Work Effectively 
By John Salinas .......................................................................................................................................... 13
 

CFD Made Easy with CaseMan 
By Dr. Alan Shih, Marcus Dillavou, Corey Shum, Fredric Dorothy, and Dr. Bharat Soni,
 
University of Alabama, Birmingham ............................................................................................................ 17
 

Diesel Fuel and High Performance Computing 
By Mike Gough ........................................................................................................................................... 23
 

UGC 2007—“A Bridge to Future Defense” 
By Rose J. Dykes ....................................................................................................................................... 25
 

Next Generation . . . 
By Rose J. Dykes 

ERDC MSRC Team Members Mentor JSU Graduate Students ................................................... 26


    ERDC MSRC Participates in SAME/Army Engineering and Construction Camp......................... 27
 

visitors ........................................................................................................................................................ 28
 

acronyms .................................................................................................................................................... 32
 

training schedule ......................................................................................................................................... 32
 

ERDC MSRC Resource, Fall 2007 1 



 

 

DYSMAS Benchmark Calculations of In-Air Explosive 
Effects on Expedient Field Fortifications 
By Michael J. Roth, William F. Heard, and Ryan D. Stinson, ERDC Geotechnical and Structures 
Laboratory; and Paul Adams, Kevin George, and Miguel Valenciano, ERDC Data Analysis and 
Assessment Center 

High Performance Computing (HPC) helps 
protect soldiers in the field by aiding in the 
investigation of earth-filled revetment struc
tures that are typical of expedient construc
tion methods used in a hostile field environ
ment for building security check points and 
other protective structures. 

In support of the U.S. Army Engineer Research and 
Development Center (ERDC) survivability and protec
tive structures research, the Survivability Engineering 
Branch, Geotechnical and Structures Laboratory, has 
conducted extensive studies on the performance of 
expedient protective structures constructed and occu
pied by military forces operating in a contingency 
environment. Common characteristics of these expedi
ent structures include construction with nontraditional 
materials and exposure to a wide range of direct fire, 
indirect fire, and blast threats. Because of this, an 
understanding of the expected protective performance 
requires thorough study of the structures in a variety of 
attack conditions. 
Over the last decade, one of the most prevalent contin
gency environment protective construction materials 
has been HESCO Bastion® revetment walls. Consist
ing of geotextile-lined wire baskets, the HESCO 
Bastion® material is transported in a low-weight, low-
volume configuration and is filled with soil once in place 
to create a protective revetment wall. The soil-filled 
baskets are also often used to construct protective 
structures such as observation posts, an example of 
which is shown in Figure 1. The observation post 
shown is considered to be representative of a typical 
contingency environment field fortification used by the 
U.S. military in Iraq or Afghanistan. 

To investigate the effects of a large explosive detona
tion on this type of structure, ERDC has performed a 
combined experimental and numerical research effort. 
In two international experiments conducted by the 
Australian Defence Force (ADF), ERDC gathered 
data on the internal and external pressure environment 
resulting from high-yield explosive events, as well as 
gathered structural response data to validate assump
tions made in a concurrent modeling and simulation 

Figure 1. Observation post 

effort. In the modeling and simulation component of the 
project, numeric models were built with a computation 
fluid dynamics (CFD) code to simulate the experimen
tal conditions and benchmark the computational results 
against collected data. With the code results validated, 
the numerical models could be used as a “virtual test bed” 
to consider the influence of variations in (1) charge 
weight, (2) standoff, and (3) relative orientation of 
structure to the charge—which would be prohibitive to 
do through physical experimentation. 
Gemini (Wardlaw et al. 2003), a first-principles CFD 
code developed and maintained by the U.S. Naval 
Surface Warfare Center (NSWC) at Indian Head, MD, 
was selected for use in the numerical efforts. Gemini is 
the Eulerian component of the DYSMAS code suite 
(McKeown et al. 2004) and is coupled with the 
Lagrangian code DYNA-N to perform fully coupled 
fluid-structure interaction calculations. Gemini, within 
the framework of DYSMAS, has been used in many 
instances by ERDC analysts to simulate in-air explosive 
events because of the tight coupling algorithm that is 
used between the Eulerian and Lagrangian solvers. 
However, because the code is maintained by the Navy, 
its primary application has been for below-water 
simulations; subsequently, little data exist to validate 
results for in-air explosions. Therefore, the combined 
experimental and numerical effort described here 
provided an added benefit of generating benchmark 
calculations for Gemini simulation of in-air explosions. 
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To simplify the computational effort and focus 
benchmarking on Gemini, the calculations were limited 
to purely Eulerian, and the observation post was 
modeled with Gemini’s “blocked cells” option. In 
Gemini, blocked cells are treated as rigid material, and 
their surface is perfectly reflecting. Representation of 
the observation post in this manner was based on an 
assumption that because of the structure’s significant 
mass, the controlling hazard to occupants would be 
driven by internal pressure conditions and not by 
structural collapse. This assumption was verified in the 
experimental work, in which the structure shown in 
Figure 2 experienced internal pressure conditions that 
correlated with a high probability of lethality based on 
published physiological response data (Cooper 1996). 
However, as seen, the structure did not collapse. 

Figure 2. Heavily damaged but stable structure 

In support of the experimental program, Gemini calcu
lations were performed to simulate the ADF multiton 
explosive event, in which multiple field fortifications 
were exposed to the resulting blast effects. Gemini 
modeling was performed in two separate stages: two-
or three-dimensional (3-D) free-field calculations that 
were subsequently mapped into a 3-D model of the 
flow field and structure. 

Figure 3. Empirical vs. DYSMAS (Gemini) comparison 

Initial free-field calculations were performed in a 2-D, 
axisymmetric domain with the charge loaded into a 
quarter-circular region based at the domain’s origin 
(thus representing a hemispherical surface detonation). 
The domain was discretized with a gradient mesh, and 
the total cell count was approximately 2.6 × 106. 
After simulation of the hemispherical detonation, results 
were compared with experimental measurements. It 
was found that the simulation results did not match the 
measured pressure conditions. Peak pressure and max
imum impulse differed by as much as 40 and 25 percent, 
respectively. 
Simulation results were compared with empirically 
determined pressure-distance curves (Hyde 2004), 
which have long-been shown to be accurate for 
hemispherical charges. Figure 3 indicates good agree
ment was found. 

Therefore, to determine the source of disagreement, 
the trial records were reviewed. It was found that— 
although the charge was initially planned to be a hemi
spherical charge—when built, it was actually in the 
shape of two stacked rectangles. Furthermore, instead of 

Figure 4. Charge configuration 
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Figure 5. Simulation of nontypical charge shape and initiation mode 

being center-point detonated as is commonly done, the 
charge was simultaneously surface-detonated at 36 initi
ation points. Figure 4 shows the charge being constructed. 
With the recognition that the experimental charge was 
both built and initiated under nontypical conditions, the 
free-field calculations were repeated with the expecta
tion of better capturing the overpressure conditions. In 
the repeat calculations, both 2- and 3-D domains were 
employed.A relatively small but finely discretized 3-D 
domain (cell size 3 cm, domain size 9 m by 9 m by 3.5 m) 
was used to simulate the detonation with a high level of 
fidelity and provide insight on the nonidealized condi
tions influence on the shock front formation. Figure 5 
shows expansion of a shock front isosurface in the 3-D 
domain, and as seen, the nature of the front is notice
ably different from that expected from an idealized 
hemispherical charge. 
The free-field calculations were also performed in a 
2-D domain to propagate the shock front to the appro
priate standoff with less computational cost than that of 
the 3-D domain. In the 2-D domain, the charge was 
simulated as two stacked disks, with concentric initia
tion rings used to approximate the initiation points. 

Figure 6 compares results from the 2-D domain with an 
experimental record in the free field. As seen, the 
calculated results reasonably match the experimental 
data, with differences in maximum pressure and impulse 
of approximately 14 and 7 percent, respectively. The 

Figure 6. Experimental vs. DYSMAS 
(Gemini) comparison 

primary difference noted in the records is the shape of 
the wave forms: the experimental record shows a 
second peak during the initial decay, whereas the 
numeric results do not show this second pressure rise. 
To investigate the cause of the difference of wave 
forms and why the second rise was not seemingly 
captured in the numeric results, the shock front expan
sion prior to arrival at the gage was studied. On review 
of the numeric results, it was seen that, in fact, Gemini 
did calculate a nontypical shock expansion of similar 
nature to that measured in the experiment. As seen in 
Figure 7, because of the nontypical charge configuration 

Figure 7. Pressure state plots, DYSMAS (Gemini) calculation of nontypical shock front expansion 
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and means of initiation, at 5.5 msec after detonation, 
several distinct wave fronts had formed. Near the 
ground surface, a small uniform front had formed 
beneath a faster moving, parabolic-shaped front. Above 
these, a larger, more uniform front had expanded and 
was more characteristic of a shock front that might be 
expected from a typical hemispherical charge. At 23.5 
msec, the two lower fronts had converged into a single 
uniform wave, but the upper front still remained distinct 
and had begun to generate a downward moving wave 
into the lower, uniform zone. At 52 msec, with the 
ground wave front at a standoff approaching that of the 
experimental free-field gage, the downward moving 
front had reflected off the ground surface and gener
ated a double pressure pulse, as seen in the experimen
tal data. Based on the height of the gage and the timing 
of wave coalescence in Gemini, the output point 
corresponding to the experimental gage showed only 
the uniform wave front formed after the ground 
reflection. However, as seen from review of the entire 
pressure field, Gemini clearly captured the nontypical 
wave expansion measured in the experiment. 
With the pressure environment in the free field accu
rately modeled, the 2-D pressure field was mapped into 
a 3-D Cartesian domain to calculate conditions in, and 
around, the structure. For the 3-D calculations, the 
domain was approximately 23.1 m (direction of shock 
flow) by 4.8 m (transverse to shock flow) by 3.6 m 
(height). Discretization of the domain resulted in a total 
cell count of approximately 1.9 × 106 cells. The 
structure (rendered view) during engulfment by a shock 
isosurface is shown in Figure 8. 

In both of the ADF trials, ERDC constructed multiple 
structures with various standoffs from—and orienta
tions to—the charge. Active instrumentation was used 
to measure the overpressure environment at specific 
locations within the structures, which was in turn used 
for comparison with Gemini results. Four pressure-time 
records from the experimental events are shown in 
Figure 9, along with time-domain shifted Gemini-
calculated conditions at the same locations. Shifts of 
the Gemini data (in time-domain only) were minor, 
ranging from 5 to 8 percent, and were done to provide 
more direct comparison of the calculated versus 
experimental wave forms. As seen, Gemini closely 
matched all aspects of the pressure-time conditions. 
The difference (between experimental and computed) 
in peak pressure for these records ranged between 4 
and 26 percent, and maximum impulse difference 
ranged between 2 and 18 percent. Furthermore, 
exceptionally close agreement was seen in the experi
mental and computed wave forms, showing that Gemini 
accurately captured the nature of shock flow into—and 
through—the structures. 
Figure 9 shows that overpressure conditions computed 
by Gemini can be output at specific locations, providing 
detailed flow field information at discrete locations. 
However, state-plots (e.g., pressure, density) are also 
available in the Gemini output, providing more compre
hensive insight into the conditions impinging on the 
structure and its occupants. Figure 10 shows pressure 
conditions during engulfment of an experimental 
structure. Shown is a cut-away view of the structure, 
with pressure contours plotted on the internal and 

Figure 8. Shock isosurface engulfment of structure (with structure rendered) 
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 Figure 9. Internal conditions - experimental vs. DYSMAS (Gemini) results 

Figure 10. Visualization of structure engulfment, pressure contours 
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external structure faces. From this, the nature of the 
shock flow in, and around, the structure can be clearly 
seen. Furthermore, detailed studies of the flow condi
tions can be made, and if desired, the structure configu
rations could be modified in an attempt to improve 
survivability of position occupants. 
This benchmarking effort shows that Gemini was 
capable of accurately modeling the in-air detonated 
free-field effects of both an idealized hemispherical 
charge and a nontypical charge configuration initiated 
with a multipoint surface detonation scheme. Mapping 
the free-field results into a 3-D domain containing the 
experimental structure further showed that Gemini 
accurately captured the internal pressure conditions— 
both in terms of pressure magnitude as well as nature 
of the wave forms. Only four internal pressure-time 
records were presented to evidence the accuracy of 
Gemini’s calculations; however, additional data were 
available to researchers for more extensive compari
son. Although in some cases the peak pressure magni
tude agreement was not as close as that shown here, 
the computed wave forms closely agreed with the 
experimentally measured. Because of the wave form 
agreement, regardless of maximum pressure differ
ences, it is believed that Gemini accurately computed 

the fundamental characteristics of the shock flow 
through the structures, thereby showing strong indica
tion of its capability to accurately model complex shock 
flow resulting from in-air explosive events. Therefore, 
based on the results of this effort, it is recommended 
that additional opportunities be identified and exploited 
to make further experimental/numerical comparisons 
and extend the code’s validation data set in applications 
of Army interest. 
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Our Newest Addition — The Cray XT4
 
By Jay Cliburn 

ERDC is adding in 
80,000,000,000,000  FLOPS for 
DoD users with the Cray XT4. 

The XT4 hostname will be Jade and will 
be housed in 24 equipment cabinets. In 
its final configuration, Jade will consist 
of 538 compute blades, each containing 
four quad-core 2.3 GHz Opterons, for a 
total of 8,608 compute cores. (The 
2.3 GHz clock speed is an estimate and 
depends upon what’s available from 
AMD at the time of Jade’s delivery.) 
Each compute node will run Linux – 
unlike Sapphire, which runs Catamount 
on its compute nodes – and will be pop
ulated with 8 GB of memory, thus maintaining the 2 GB 
per core memory-to-CPU ratio found today on Sap
phire. The system will contain over 370 terabytes of 
Lustre workspace disk storage. Jade also sports an 
improved internal node interconnect, the SeaStar2, 
which provides a sustained bandwidth of over 6 GB/ 
sec. (By comparison, the older SeaStar on Sapphire 
provides 4 GB/sec of sustained bandwidth.) 
Jade will be delivered with 76 dual-core service and 
I/O nodes, of which 32 will be configured for user 
interaction according to the table below. 

Pretty in camo: Conceptual rendering of Jade 

The ERDC MSRC is excited about the computational 
capacity offered by this powerful new system and 
looks forward to bringing it into production service in 
the spring of 2008 to meet the needs of its users. 
Please don’t hesitate to contact the Consolidated 
Customer Assistance Center (CCAC) if you have 
questions or need additional information. CCAC can be 
reached at help@CCAC.hpc.mil or telephone 1-877
222-2039. 
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Say Goodbye to Old Systems and Hello to New Storage
 
By Jay Cliburn 

In the past few months, 
the ERDC MSRC has bid 
farewell to one very familiar 
system and significantly 
modified another not-so
well-known system. 

Most noticeably, we’ve decommis
sioned the SGI Origin 3900 system 
known as Ruby. Ruby was actually 
comprised of multiple systems: two 
512-processor nodes called Silicon 
and Sand, and a front-end login host 
that was the actual physical host called Ruby. These 
systems were kept in service longer than scheduled to 
accommodate user needs. (There were other smaller 
systems, too, but they had support roles with which 
users never knowingly interacted.) Silicon and Sand 
entered service at the ERDC MSRC in fall of 2003 and 
proved to be remarkably stable workhorses, routinely 
exceeding 90 percent monthly utilization and providing 
users with a vast quantity of shared memory. 
In a configuration change much less visible to the user 
community, but significant nonetheless, the ERDC 
MSRC replaced its three StorageTek 9310 tape silos 
with a new, single Sun/StorageTek SL8500 tape library 

SGI Origin 3900 

in May 2007. The old 9310 silos had been on the floor 
for well over a decade and contained a total of about 
16,500 slots for tape cartridges. The new silo contains 
“just” 10,000 slots, but in a significantly smaller foot
print. Each tape cartridge in the new silo holds over 
twice as much data as its predecessor (500 gigabytes 
versus 200 gigabytes). 
The ERDC MSRC is pleased to provide new mass 
storage capacity to its users. If you have questions or 
comments, please contact the Consolidated Customer 
Assistance Center (CCAC) at help@CCAC.hpc.mil 
or telephone 1-877-222-2039. 

StorageTek 9310 tape silos Sun/StorageTek SL8500 tape library 
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Getting the Most from Multiple Cores on the XT3
 
By Tyler Simon 

Sapphire has become a multicore system. 
Find out below how to improve your code 
performance. 

Commodity multicore chips have become an integral 
part of high performance computing architectures. As 
processor vendors move towards concurrent process 
execution on a single chip, the software developers for 
these systems can no longer rely on increased proces
sor frequency to lead to increased application perfor
mance. Rewriting an application to take advantage of 
multicore chip architecture is a good start at improving 
performance. However, users must also become more 
aware of the resource demands of the multicore 
computing system and runtime environment for best 
code performance. This article provides a brief over
view of three areas where a developer or user can 
potentially improve application performance on the 
ERDC Cray XT3 (Sapphire) and other multicore 
systems. Additionally, by understanding some common 
areas of contention and performance bottlenecks in 
existing dual-core hardware, users may be better 
prepared to make more detailed improvements to their 
code and prepare for the upcoming quad-core Cray 
XT4 to be installed at ERDC. The following recom
mendations come from experiences running codes on 
the single- and dual-core Sapphire. 

Sapphire Overview 
Currently, Sapphire contains 4,160 processing nodes 
with each node running a 64-bit, 2.6 GHz dual-core 
Opteron processor with 4 GB dedicated memory. The 
nodes are connected to each other in a three dimen
sional (3-D) torus using a Hyper Transport link with a 
dedicated Cray SeaStar communications engine. 
Sapphire is rated at 42.6 TFLOPS and contains 374 TB 
of Fibre Channel RAID disk storage. Sapphire runs the 
UNICOS 1.5.39 operating system with the Catamount 
microkernel running on the compute nodes. Service 
nodes run a full SuSE Linux distribution with Cray XT3 
extensions. The pre-upgrade system specifications 
included the 1.4.43 version of UNICOS and 4,096 
nodes of 2.6 GHz AMD Opteron processors, with one 
core per node and 2 GB of user-accessible memory. 

Areas of Contention and Solutions 
Memory Contention at the Chip Level 
In order to get a code to perform better on multicore 
processors, an understanding of Sapphire’s dual-core 

Figure 1. Single- and dual-core memory read and write 
access time for variable block size 

memory hierarchy will be helpful. On Sapphire the L1 
cache is divided into a 64K data cache and 64K 
instructions cache, with 1 MB of L2 cache. Each core 
has access to a single pool of main memory; thus the 
main memory bus becomes a main point of contention, 
especially for memory-intensive codes, as each core 
must be scheduled for individual memory access. 
Figure 1 shows main memory read+write access time 
on the single- and dual-core chips on Sapphire. The test 
increased the cache stride size in bytes (x axis) and 
calculated the read and write time. Figure 1 depicts the 
dual-core memory access time is greater than single 
core, thus quantifying the effect of memory contention 
on Sapphire’s AMD Opteron chips. 
As a developer, off-chip memory contention may be 
alleviated by fitting arrays primarily into cache. When 
this is not feasible or the array size is larger than cache, 
the users should reduce the number of cores that 
access such data. Thus a process scheduling solution 
may benefit code execution time by specifically limiting 
or interleaving core-to-memory access. 

Process Affinity at the OS Level 
Each dual-core node retains a single operating-system 
image; thus each execution thread must be assigned an 
execution core and scheduled by the OS. This process 
can be examined by looking at the current OS schedul
ing algorithm and by taking advantage of process 
affinity. Process affinity allows a user to map a process 
ID (pid) to a core for execution. A user can gather 
which SMP scheduler the current OS is using via the 
sched_getscheduler(pid) function. A user 
can view the core a process is intended on running by 
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viewing the process affinity mask using 
sched_getaffinity (pid, len, 

&mask) where &mask is returned as the 
core umask of the process ID and 
(sched_setaffinity (pid, 
len, &mask) will allow the user to set 
this value to the appropriate core. A more 
dynamic or adaptive approach to process 
affinity may provide more efficient use of 
the additional core. 

MPI Process Placement at Runtime 
One of the effects of running MPI over 
multicore nodes is that MPI ranks have the 
chance of being placed on the same node, 
thereby improving the bandwidth for those 
particular ranks. The difficulty then becomes 
how to properly map MPI ranks to execution 
cores for optimal throughput and reduced overall job 
runtime. As an example of this behavior, Figure 2 
demonstrates the throughput between ranks in a 
persistent blocking all-to-all MPI on the 2.6 Dual Core 
AMD Opteron system at the Arctic Region 
Supercomputing Center (ARSC). Each node on this 
system contains 8 dual-core chips. The increased 
throughput is visible here in groups of 16, as expected. 
A user can exploit this behavior only at runtime, as the 
physical node location is often non-deterministic. I 
propose the following method, which can be used for 
taking advantage of increased internode bandwidth for 
the ERDC XT3. 
On Sapphire, once a user submits a job, it is generally 
run on any available processors, whether they are 
contiguous or not. Thus users have little control of their 
MPI rank to compute node placement. Users may 
specify a MPICH_RANK_REORDER_METHOD in 
their batch submission script to attempt different 
process placement strategies, but any 
benefits will depend on the communication 
patterns of the code. For example, Figure 3 
shows GAMESS runtime is improved as a 
symmetric multiprocessor and folder rank 
reordering method is used, as opposed to 
the default round-robin placement strategy. 
Taking this idea even further, users can 
specify any rank ordering the setting 
MPICH_RANK_REORDER_ 
METHOD=3 in the batch submission 
script. At job runtime the file 

Figure 2. Examines the MPI bandwidth between ranks 
for a 64-node run on the ARSC Midnight Cluster 

“MPICH_RANK_ORDER will be read, and ranks will 
be placed in the order specified, such as “0,1,3,2” for a 
4-node job. 
For codes with specific data-locality needs, Sapphire 
allows for “yod” to be executed with an ordered list of 
nodes using the “yod –list” option. Thus the user can 
combine the MPI_RANK_ORDER file with a specified 
list of nodes to run on a more custom process topology. In 
the following batch script, the first yod runs a program 
that prints out the node id’s and MPI ranks to a file. Users 
then can perform some selection criteria on how they 
want those nodes ordered as well as saving their associ
ated ranks into the MPI_RANK_REORDER file. This 
example demonstrated just a sort routine based on the 
numerical value of the fourth column. The script then 
waits 5 seconds for the job to complete, creates the list 
of nodes, and submits another job with “myexecutable” 
for the modified topology. 

Figure 3. MPI process placement 
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###Pretest code to generate node id’s
 
yod -VN -np 4 ./nodelist >>nodelist_4_$PBS_JOBID.in
 

###Reorder based on some metric!
 
cat nodelist_4_$PBS_JOBID.in | sort -nrk4 | head -4 | > MPICH_RANK_ORDER
 

###wait for yod to cleanup
 
sleep 5
 
nodelist=(`cat nodelist_4_$PBS_JOBID.in | sort -nrk4 | head
 
-4 | awk '{printf("%d,", $1); }'`)
 

###Add your executable here!
 
export MPICH_RANK_REORDER_METHOD=3
 
yod -list ${nodelist[@]} -VN -np 4 ./myexecutable >reorder_$PBS_JOBID.out
 

Conclusions 
Some codes tend to do better on multicore systems 
with little to no modification; these tend to be codes 
that have a little memory contention or have non
uniform process needs, such as in GAMESS. Figure 4 
shows a comparison of runtimes on single- and dual-
core Sapphire. LAMMPS is computationally intensive 
with little memory access. The codes used to evaluate 
the performance of the XT3 are a subset of the bench
marks that are used in the High Performance Comput
ing Modernization Program (HPCMP) Technical 
Insertion (TI) procurement process and also represent 
the HPCMP computational technology areas. Each 
code was executed with a fixed problem size on the 

single- and dual-core Sapphire nodes, with the depen
dent variable being runtime. Each code was compiled 
with the PGI compilers with the default compiler 
optimization levels set “-02”. The improvement seen in 
GAMESS is due to the processor upgrade as well as a 
code revision, from R4 to R6. 
In conclusion, multicore architectures are becoming 
more common in high performance computing environ
ments, and more traditional methods of code perfor
mance gain will not work as well for current HPC 
computing environments. Thus, developers need to 
educate themselves in these new processor and 
compiler technologies and customize their runtime and 
code development practices around them. 

Figure 4. Ratio of single- and dual-core application runtimes 
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Lustre:  Five Things That Can Make it Work Effectively 
By John Salinas 

The last time I heard John West give a talk, he spoke about how we need to make supercomputing easier for 
users. Since the room was full of bright people, I felt confident that they would go and make this happen while I 
went happily back to doing whatever I was doing. But as my week progressed, I kept receiving problems that dealt 
with how users were using the Lustre file systems on Sapphire (ERDC Cray XT3). Many aspects of what they 
were trying to do were ill-suited for the place they were trying to do them – the thought occurred to me that we 
might be able to simplify the life of some users if we gave them some basic guidelines on how to use the Lustre 
file systems to their advantage. The purpose of this article is to provide information to users that will help them use 
Luster file systems more effectively. 

Basics of a Lustre File System 
Lustre is designed to be a high performance scalable 
file system that runs over a wide variety of configura
tion. It is also designed to be easily configured by users 
to meet their specific needs. This is a change from 
many older file systems that were designed to hide all 
the complexity of input output (I/O) operations from 
the user (See graphic on the right). 

The Lustre implementation on Sapphire has a client 
reading and writing data from a Catamount compute 
node over the high-speed network to object storage 
servers (OSSs) that contain object storage targets 
(OSTs). The metadata server (MDS) interacts with the 
OSTs and the client to keep track of files, directories, 
and file system information. A basic overview looks 
something like the following: 

The client and the OSSs, which contain OSTs, take 
care of the data, file locking, and acknowledgment of 
packets being sent back and forth. The OSTs and the 
MDS take care of file creation, file status, and recov
ery. Communication between the MDS and the client 
ensures concurrency and directory metadata. For more 
details on what each component does and what it 
connects to, see the Lustre documentation: http:// 
manual.lustre.org/manual/LustreManual16_HTML/ 
DynamicHTML-01-1.html. 

Choosing a File System 
We have established that the Lustre file systems have defaults that are picked up each time a file or directory is 
created. These defaults are not as well suited for a wide range of I/O operations as many previous types of file 
systems were. It is in the users’ best interest to consider what the defaults are so they know where to run their 
code. If this information is not published in a guide, it can be obtained by creating a file on the Lustre file system in 
question and then running the following: 

lfs --verbose getstripe filename
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Printing out information about the defaults would be helpful. The following shows how the file systems on Sapphire 
look: 

With this information, users can refer to the five basic guidelines below to help decide where to run: 
1.	 The basic principle is to use as few stripes as possible to accomplish good performance on the application. The 

more stripes that are used, the more overhead, contention, and risk are involved. 
2.	 Small ASCII text files need to be buffered and put on one of the Network File Systems (NFSs). The more 

small transfers that are done, the more time is taken away from OSTs. 
3.	 If one I/O client (one CPU) writes one large file of well-aligned, large I/O, /work2 should be used where the 

default stripe size is six. Because the stripe size is six, the pipe to disk is three times that of /work where the 
default stripe size is two. This means better performance for a small number of clients writing one file. 

4.	 If multiple files are reading/writing I/O, then the default stripe of two on /work will likely be the best option, as 
two OSTs are provided for each file. 

5.	 If a large number of files are opened for reading/writing and they all need a high performance file system, 
/work2 is used if the number is less than 192, and /work is used if the number of open files is between 192 and 
443. The formula is to try and not use more than ~4 times the number of OSTs on the system. If there is a 
need to run over 444 files, turning off striping is suggested by using lfs setstripe testfilename 0 0 1 
(file name stripe size, start OST and stripe count). 

For specific examples, see the Sapphire I/O User Guide, which is on the ERDC MSRC Web site at 
www.erdc.hpc.mil. 

Configuring Lustre 
Since most applications have many different I/O operations and files, it is unlikely that any one file system will 
have defaults that will work well for every file. Generally, users want to find their most I/O-intensive files and find 
the file system that best meets those needs. Then they can make files and directories that meet the needs of their 
other files. Users can select lfs setstripe to change the file system defaults to suit their needs: 
lfs setstripe largefile 0 -1 4
 
lfs setstripe smallfile1 0 -1 2
 
...
 
lfs setstripe smallfile10 0 -1 2
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In this example, lfs setstripe is used to create a file called largefile with a default stripe size (1 MB), a 
default start OST (rarely desirable to change this), and a default count of four OSTs. The second file would be 
created called smallfile with a default stripe size and 
start OSTs, but a default of two OSTs being used. 
Using this same process, users could create 10 files that 
are all like this, having 11 files, one with a stripe count 
of four, the rest with stripe counts of two. If users were 
running on /work on Sapphire, they would only have to 
change the default for largefile to use four OSTs, 
and the rest could pick up the default of two OSTs. To 
the right is a basic chart to help give guidelines on how 
many OSTs to use per file. 
The basic rule of thumb is with multiple files that are all under ~12 GB, the default stripe count of two on /work is 
a good default. The goal should be to set up each run with file system options that will be the best for each file. 
Remember that OSTs are a shared resource. If an application uses them poorly, multiple users can be affected. 

Performance Information 
Cray PAT Setup 
Cray provides performance analysis tools that can help users better understand their application. However, they 
behave differently on a Lustre file system, such as /work, from an NFS such as /u. Multiple processor jobs require 
the ability to do record-locking. This means that if users are running any parallel applications, they need to run 
them for either /work or /work2. Also, the NFSs have a limit of 1,024 files that can be opened at the same time. 
To get around this, users should run from a Lustre file system (/work or /work2). If it is not possible to run the 
code on a Lustre file system, then users can set PAT_RT_EXPFILE_DIR runtime environment variable to 
redirect CrayPat output to a target directory on the Lustre file system: 

export PAT_RT_EXPFILE_DIR=/work/username/dirname
 

Using Pat Build and Pat Report 
The first step is to instrument the code using the -g trace group option to select a relevant experiment. The options 
for I/O are as follows: 

(FILE *) construct
 

module load craypat
 
(remember pat_build needs access to .o files)
 

pat_build -g io IOR
 

ls -lart IOR IOR+pat
 

-rwxr---- 1 jsalinas erdcssta 12028665 Sep 10 11:57 IOR
 
-rwxr---- 1 jsalinas erdcssta 12263601 Sep 10 11:57 IOR+pat
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The second part is to run the program qsub to submit 
The report will give informationwith yod ./IOR.exe-instr. After the job completes, 
on how long it took to write some-run pat_report. 
thing, how much I/O was done, 

pat_report -O write_stats IOR.exe-instr+136
 what the rate was, etc. This is 
(also a read_stats)
 often helpful if combined with 

Data file 24/24: [....................]
 other pat_build -g tracegroup 
CrayPat/X: Version 3.0 Revision 210 (xf 73)
 options to find out what percent-
06/20/06 16:28:30
 age of time is spent where. 
Experiment: trace

 ...etc...
 

If running with Iobuf, users can get it to tell them what it knows about the files it has been monitoring: 

% setenv IOBUF_PARAMS '*:verbose'
 
% ftest2 input2


 I/O time 15.32200

 Compute time 53.26200

 Total time 68.58400

 I/O time per iteration 0.1532200

 Compute time per iteration 0.5326200

 Total time per iteration 0.6858400

 Total I/O (bytes) 800000000

 I/O rate (MB/s) 49.79373


 File "input2"


 Calls Seconds Megabytes Megabytes/sec


 Open 1 0.000006

 Read 201 15.318910 762.940216 49.803818

 Close 1 0.000006

 Total 203 15.318923 762.940216 49.803778

 Sys Read 49 78.300950 762.940216 9.743690
 

ERDC MSRC Resource, Fall 2007 16 



 

CFD Made Easy with CaseMan 
By Dr. Alan Shih, Marcus Dillavou, Corey Shum, Fredric Dorothy, and Dr. Bharat Soni, University of 
Alabama, Birmingham 

CaseMan takes care of all the details for the 
HPC user. 

With the advent of computer hardware and numerical 
algorithms, computational fluid dynamics (CFD) has 
become a reliable and effective tool for performance 
prediction in the design selection process. It also holds 
great potential for design optimization for large-scale 
and complex designs. It can be used to acquire a large 
number of design points that traditionally relied upon 
expensive and tedious experiments. However, despite 
all the potential that CFD has for better designs in a 
more cost-effective manner, it is still hampered by the 
need for large amounts of central processing unit 
(CPU) time on a sophisticated high performance 
computing (HPC) environment to iteratively solve a set 
of nonlinear governing equations called the Navier-
Stokes equations for a single-phase flow. When chemi
cal reaction or other more sophisticated physics models 
are also needed for complex flow fields, such demand 
for CPU time increases further. CFD solvers also 

require a user to have fairly extensive experience and 
knowledge in order to use them correctly and effec
tively. This poses major challenges in terms of accu
racy, throughput, and cost-efficiency when using a 
CFD tool to acquire important performance data. 
Compounded with these challenges are the less trivial 
Linux/Unix working environments and job queuing 
systems on the HPC systems on which CFD cases are 
usually calculated. This is especially challenging for 
most of the novice CFD users who are more familiar 
with the single-user, graphics-driven Windows environ
ment instead of the command-based and script-based 
Linux/Unix operating systems. 
Accuracy improvement, throughput increase, turn
around time, and cost reduction are the key challenges 
to CFD use in the design process. Solution throughput 
must be significantly improved in the generation of 
aerodynamics, propulsion, and fluid dynamics simula
tions that involve parametric and sensitivity design 
studies. Such parametric and sensitivity studies require 
a large number of CFD simulation runs. However, 

Flow Solver Builder module allows the user to specify the variable types and names 
that the flow solver will need. It can be used to specify the value ranges to prevent 

users unknowingly specifying invalid numbers 
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performing a CFD simulation is a challenging problem 
for both novice and experienced users, as they must 
deal with the preparation of the simulations by specify
ing different input parameters; the complexity of 
running these simulations on different environments of 
the DoD Major Shared Resource Center (MSRC) 
HPC systems; and managing the output produced by 
these simulations. Despite the fact that most of the 
CFD codes used by DoD users represent state-of-the
art technologies with excellent parallel performance, 
the current overall simulation process falls short of 
achieving the required throughput. A productivity 
enhancing toolkit called “CaseMan,” supported under 
the DoD High Performance Computing Modernization 
Program (HPCMP) User Productivity Enhancement 
and Technology Transfer (PET) program (Project 
CFD-KY7-001), is currently under development with 
the alpha version available to the DoD user community. 
This framework allows the user to prepare, submit, 
monitor, and manage a large number of CFD simula
tions on the DoD MSRC HPC systems and other non-
DoD cluster systems. 

Overview of CaseMan 
CaseMan is a tool designed to make setting up, submit
ting, and monitoring CFD jobs simple and easy. To 
achieve this, CaseMan abstracts out solvers and 

computing environments and only presents them to the 
user in a high-level, intuitive way. No longer do users 
need to edit complex input files, write submission 
scripts, or learn the intricacies of each solver and 
environment. Instead, CaseMan takes care of all these 
details for the user. The immediate impact is to allow 
the user to quickly prepare the simulation input files and 
make complex supercomputing tasks associated with 
CFD much more user friendly, as CaseMan shields the 
user from the complexity of utilizing HPC systems. 
On startup, the user selects which solver to set up. A 
simple interface with all the necessary parameters the 
user needs to input is presented. The interface by 
default shows short descriptions of variables instead of 
the solver variable name (i.e., Mach Number instead of 
MACHNO), but it is possible to switch the view to 
show the solver variable names. Each input is fully 
documented and is also statically typed, which means 
that CaseMan knows what type of variable the user 
needs to enter (string, integer, floating point, etc.). 
Conditionals are also set up on variables that can cap 
values, warn the user about certain situations, or disable 
choices that are not valid in certain situations. 
CaseMan also has recommended values for each 
variable, which gives the user a good starting place. 
Users can also set their preferred skill level. If the user 
chooses a beginner or intermediate skill level, then 

Flow Solver Builder module also allows the user to establish the conditionals relationship 
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variables that are not required are hidden from the user 
to keep the interface simple. This feature enables casual 
CFD users to use CFD solvers to obtain important design 
performance data without a steep learning curve. 
CaseMan also manages all the necessary files for a 
job. After setting up a job in CaseMan, the user-entered 
input is automatically converted to the input file(s) for 
the specified solver. On submission to an HPC system, 
all required files, including the input files, grid files, 
restart files, and any other file the user has specified, 
are automatically transferred to the HPC system. On 
the HPC side, the directory structure is automatically 
created; all files are automatically written to their 
correct location and filename; and submission scripts 
are automatically generated. CaseMan interacts with 
the queuing system to submit and monitor the jobs and 
also knows how to associate with MPI or other re
quired libraries to run the solver. As the job runs, 
CaseMan constantly monitors the job status. This 
allows CaseMan to warn the user immediately if there 
is a failure in the simulation job. CaseMan also extracts 
lightweight data as the job runs. These data can be 
plotted and visualized in real time on the client machine, 
allowing the user to check the convergence history. 
These data could also be used to steer the job or stop 
the job if it is not converging. 

Current Features of CaseMan 
In its third year of development, CaseMan will bring 
many new changes including the support of more CFD 
solvers, more HPC systems, and process control. 
Currently, CaseMan supports Overflow2, NXAir, 
Hyb3D, Wind, Cobalt, FDNS, and NASCART, with 
several others in the testing phases. CaseMan has been 
tested on several MSRC HPC systems such as Sap
phire and Ruby at ERDC, Falcon at the Aeronautical 
Systems Center, and other systems at the Army 
Research Laboratory and Maui High Performance 
Computing Center. Other untested MSRC systems 
should also work, but CaseMan has not been fully 
tested on them yet. 
For authentication on MSRC HPC systems, CaseMan 
utilizes the User Interface Toolkit (UIT) that was 
developed and well-supported by a team of researchers 
at ERDC. As deployed last year, the UIT includes a 
library of method calls via a secure application pro
gramming interface that enables researchers to develop 
their own interfaces to access DoD HPC systems. 
More can be found on the UIT at https://www.uit. 
hpc.mil/UIT/. UIT handles the entire Kerberos authen
tication process and makes sure all transmissions are 
properly encrypted. This relieves CaseMan from this 

Job preparation is intuitive and well-labeled. If an invalid input value is provided by the user,
 
CaseMan will raise the red flag to warn the user
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sensitive security-related task to instead focus on its 
case management core features. The UIT will always 
guarantee that CaseMan can connect to the MSRC 
systems safely and securely. CaseMan can also utilize 
SSH for connecting to commodity clusters that UIT 
does not support. 
Incorporating a new flow solver into the CaseMan 
framework has been greatly simplified using the built-in 
“Flow Solver Builder” module. This module, which is 
hidden by default since only expert users will work with 
it, allows expert users to set up the necessary input for 

a new solver. For each input value the solver needs, the 
expert user can pull from a list of globally shared 
attributes. Having a list of globally shared attributes 
allows CaseMan to identify shared attributes between 
solvers and, in the future, will allow users to easily 
migrate from one solver to another similar solver. 
As expert users add inputs, they also input documenta
tion, recommended values, and the variable name. The 
expert user can also mark inputs as required or not 
required. If the value requires a unit, the expert user 
specifies the unit in which the solver expects the input 

Lightweight data from multiple jobs can be visualized together on a local client 
to monitor the progress on the HPC systems 
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to be. CaseMan will automatically convert the value the 
user specifies into the unit the solver requires. If the 
input has specific requirements, conditionals can be 
added to it. Conditionals allow for capping values, 
setting the value in specific cases, disabling or enabling 
based on other inputs, or notifying the user of a prob
lem. All of this is set up through a simple graphical 
interface. 
After all the inputs are set up, it is still necessary to 
convert CaseMan's input into an input file that the 
solver uses. To simplify this task, CaseMan has a 
template system incorporated into it. The template 
system at the simplest level allows for variable replace
ment. For example, any variable starting with a '$' is 
automatically replaced with the value the user has 
entered: 
&FlowConditions


 FSMACH = $Mach_Number,

 ALPHA = $Angle_of_Attack,

 ...
 

/
 

The template system also incorporates a python-like 
language to allow for looping and conditionals. This is 
useful for writing out boundary conditions where an 
unknown number may be set up by the user. Unfortu
nately, to import a solver input file into CaseMan still 
requires writing a small python script to parse the file 
although this feature is not required to add a new solver 
to CaseMan. 

Short Tutorial Using CaseMan 
What follows is a short introduction of how a typical 
user would interact with CaseMan. Upon opening 
CaseMan on the user's workstation, the user is pre
sented with two options: setting up a solver from 
scratch or importing an existing solver input file. Often 
times, users already have input files for a specific 
solver that they use as a template. CaseMan can 
import these files, saving the user from having to set up 
variables. After importing a file or setting up a solver 
from scratch, an interface specific to that solver is 
generated. Each input is given a short descriptive name 
along with full documentation. Inputs are also grouped 
together logically, helping the user quickly identify 
attributes. 
As the user enters values, CaseMan will validate the 
input, notifying the user if the value is invalid. CaseMan 
will also disable or enable other choices based on the 
values entered. If the user is unsure about what value 
an input should use, the user can leave it blank or press 
the recommended value button to use the solvers 
default or recommended value. It is also possible to 
enter multiple values for a single input using the multi
plex feature. A multiplex button next to each input 
allows the user to enter multiple values or a range of 
values. This is useful for doing a parametric study. 
When generating jobs, CaseMan will create a new job 
for every possible combination. It can submit all the 
jobs as a group and monitor each job separately. 

All submitted jobs through CaseMan will be stored in the database so that a user 
can manage them easily 
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Once the user has finished inputting all the values, if 
every input has been validated, the job can be prepared. 
In this step, the job information is generated. If the user 
has set up multiplexing, then multiple jobs will be 
generated all under the same case. During this step, the 
input is converted into the solver’s native input file 
system from CaseMan's template system. 

After preparing the job, the user needs to specify which 
HPC system to connect to. If the system is at an 
MSRC, then UIT is used for authentication; otherwise, 
SSH is used. If the HPC system is a supported system, 
then all the default configurations are created and the 
job should be ready for submission. If the system is not 
supported, then on the first time connecting, the user 
will be required to enter some initial values about the 
queuing system, available solvers, and information on 
MPI. After connecting, the user can submit the job. 
Upon submission, all specified input files, such as grid 
and restart files, are transferred to the HPC system. 
CaseMan keeps a database of all the files ever used by 
jobs; if any of the files have been used before, they are 
not transferred. This keeps from having duplicate files 
on the file system. CaseMan also sets up a directory 
structure for all the jobs, writes out all the files with the 
correct names, generates a submission script specific to 
that solver and HPC system, and submits the job to the 
queuing system. As the job runs, CaseMan will monitor 
the job for failures and will also extract data. The 
extracted data can be plotted and viewed on the local 
workstation as the job is running. This lets the user 
check for convergence or other useful information. 
When the job finishes, the user can download the 
solution file through CaseMan's interface to the local 
workstation for postprocessing and visualization. 

Future Plans 
CaseMan is currently in its third year of development. 
Besides adding more solvers and support for more 
computer systems, several major features are planned. 
The biggest and most important feature planned is 
“process control.” Process control allows conditions to 
be set up and to also link multiple solvers or tools 
together so that they can be executed in a user-
specified process or sequence. With this feature, very 
large complex simulations can be performed. This 
feature can be used to start up a simulation with one 
solver and, then for those jobs that succeed, finish the 
solution with a second solver or the same solver with 
different control parameters such as the time-step. Or 
this feature could be used to detect when a solution 
converges and to stop the simulation. Multiple tools can 
be chained together as well in the process control step. 
It could allow for a complex geometry optimization loop 
between a geometry/grid generator, a flow solver, and 
an optimization code. Process control will have a simple 
graphical setup to easily allow users to set up the 
processes. With the success in CFD applications, 
CaseMan also shows potential to be migrated into other 
computational technology areas for their case prepara
tion, submission, monitoring, and management. To 
request a current version of CaseMan, please visit 
http://me.eng.uab.edu/etlab/content/view/17/40/ or 
contact Dr. Alan Shih (ashih@uab.edu) at the 
University of Alabama at Birmingham. 
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Diesel Fuel and High Performance Computing
 
By Mike Gough 

What does diesel fuel have to do with high perfor
mance computing? A backup power production facility 
will sustain the ERDC MSRC high performance 
computing (HPC) center indefinitely in the event of a 
utility power failure. Equipment failure not withstanding, 
clean fuel is the limiting factor in the ability to provide 
backup power to the MSRC. This article introduces 
you to our diesel fuel challenge. Since the installation of 
the electrical generation capability, ERDC has sus
tained numerous commercial power outages. Most are 
short-lived, but in fiscal years (FYs) 1998, 2002, and 
2003, unplanned outages lasting 5 to 9 days occurred. 
Amazingly, the ERDC MSRC did not lose power during 
Hurricane Katrina. 

Electrical Power Generation at ERDC 
Three Caterpillar diesel generator sets power the 
ERDC MSRC backup system. Presently, only two 
generators are required to carry the power load. 
However, upon the arrival of the Cray XT4 in the first 
quarter of FY08, all three generators will be mandatory. 
A 24,000 gallon, in-ground fuel tank provides diesel fuel 
for the generators. The fuel from this tank is pumped 
into smaller “day” tanks located next to the generator 
sets. The engine fuel pumps obtain their immediate fuel 
from these smaller day tanks. 

Fuel Challenge 
Diesel engine manufacturers recommend that fuel be 
stored for no more than 1 year. Historically, the MSRC 
turns its fuel about every 2 years. Since fuel turnover is 
never complete, vestiges of old fuel from every fueling 
remain in the tank. This incomplete turnover is a major 
contributor to stale and contaminated fuel. Water, 
environmental pollutants, and problems within the 
distribution system also contribute to the problem. 
Diesel fuel begins to deteriorate as soon as it is pro
duced. Within 30 days of refining, all diesel fuel begins 
a natural process called repolymerization and oxidation. 
This process forms varnishes and insoluble gums in the 
fuel when the molecules of the fuel lengthen and bond 
together. These heavier components drop to the bottom 
of the fuel tank and form diesel “sludge” (asphaltene). 
The fuel begins to darken in color, smell, and causes 
engines to smoke. As these clusters increase in size, 
only part of the molecule is burned. The remainder 
goes out the exhaust as unburned fuel and smoke. The 
increased cluster sizes begin to reduce the flow of fuel 
by clogging filters. Fuel filters address the symptom and 
not the cause. 

Sample results before (left) and after (right) fuel 
cleaning 

Most fuel contains some water from either condensa
tion or vents. The water threat requires the understand
ing of the added burden placed upon diesel fuel as 
opposed to gasoline. Gasoline is only fuel, while diesel 
fuel cools and lubricates the injection system. Water 
contamination increases engine wear. Water can cause 
damage that is more serious when it enters the com
bustion chamber. When it is exposed to the heat of the 
combustion chamber (in excess of 2,000 degrees F), it 
immediately turns to steam and often explodes the tip 
of the injector. It also corrodes tanks, lines, and injec
tors and greatly reduces combustibility. 

Fungus and bacteria are also a serious problem. 
Bacteria exist at the water and fuel threshold and feed 
on nitrogen, sulfur, and iron that may be present in the 
fuel. Byproducts of fungus and bacteria contribute to 
the diesel sludge in the bottom of the fuel tank. Natural 
chemical changes, water accumulation, biological 
growth, and accumulation of other pollutants contribute 
to the degradation of stored fuel. 

Fuel Solution 
Until a fuel tank is drained and cleaned, it retains a 
vestige of its first gallon of fuel. Therefore, fresh fuel is 
contaminated by the old fuel in the tank. Diluting the 
good with bad is a losing battle since the fuel will 
always be bad until the core problem is addressed. 
Policies and procedures must be in place to prevent, 
minimize, and remove contaminants from the fuel. The 
order of treatment for fuel-related problems begins with 
determining the type and amount of contaminants in the 
fuel. Water paste and laboratory fuel testing is used for 
this stage. 
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Next, active remedial measures are instituted. Labora
tory test results determine the exact treatment option. 
Water contamination is remedied by using fuel water 
separators. If microbes are detected, then the use of 
biocides is needed. Biocides are similar to "antibiotics" 
that kill fuel bacteria. Like human antibiotics, the 
biocide must be administered correctly to remove the 
contaminants and avoid rebound. If successful, the 
effect of the additives, without other measures, is 
temporary and will not eliminate the sludge problem. 
Next, chemical additives dissolve diesel sludge, gums, 
and varnishes that clog filters and injectors. For long-
term prevention, an inline fuel purifier continually cleans 
the fuel on demand and reduces the need for ongoing 
additive use. 
A stand-alone, closed-looped fuel polishing system, the 
Diesel Dialysis Solution, removes inorganic contamina
tion. It circulates the fuel through a cleanser that 
performs fuel particulate filtration, water separation, 
and fuel recirculation. Polishing cleans the fuel, but 
does not refurbish stale fuel. 
An inline fuel purifier performs similar functions to the 
polisher. In real time, it continuously cleans the fuel 
before it reaches the engine filters. The native OEM 
(original equipment manufacturer) filtration on the 
engine is not adequate to process hundreds of thou
sands of gallons of fuel. The fuel purifier is installed 
between the main tank and the day tanks. It removes 
100 percent of the visible water and up to 98 percent of 
dust, dirt, and other normal and natural contaminations 
found in the diesel fuel. By removing contamination 
immediately before the fuel enters the engine filter 
system, the purifier delivers cleaner fuel (virtually 
eliminating filter clogging) and therefore greatly extend
ing maintenance intervals. 
A modern fuel purifier generally uses a three-stage 
purification process employing two well-known fuel 
separation principles, centrifugal and coalescence, to 
remove water and contaminates down to 10 microns. 

By using these two principles, water and other contami
nants are separated from the fuel. 

Finally, the most severe situation warrants a complete 
fuel removal and replacement. The existing fuel is 
“traded” for clean fuel. This option also allows for the 
cleaning and inspection of the fuel tank. The replaced 
fuel can subsequently be polished and used in other less 
sensitive applications. 

ERDC MSRC Solution 
The ERDC MSRC instituted an aggressive plan to 
guarantee clean fuel. This approach begins with the 
main tanks and ends at the Caterpillar generators. To 
minimize the effect of stale fuel, the MSRC purchased 
a state-of-the-art fuel-sampling receptacle that allows 
sampling from varying depths. It installed a fuel purifier 
system and redundant switchable fuel filters for the 
diesel generator sets. 
Additionally, the MSRC is putting a fuel management 
contract in place that will remove the existing fuel, and 
clean and inspect the tank and piping. After the inspec
tion, the tank will be filled with fresh fuel. Finally, the 
fuel will be checked on a regular basis and treated 
accordingly. 
The MSRC is strengthening its fuel quality manage
ment program by instituting a program of weekly water 
checks with a probe and paste, monthly fuel sampling 
from multiple depths in the tank, and sampling of all 
incoming fuel before it enters the main tank. 
Reliable HPC cycles are the core product of the 
ERDC MSRC HPC Center. Although mundane, diesel 
fuel management is one important way that to ensure 
that the Center continues to provide computer cycles to 
the HPC customers. Through an ongoing process of 
constant policy and procedure improvements, the 
ERDC MSRC continues to provide cycles to its 
important HPC customers. 
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UGC 2007—“A Bridge to Future Defense” 
By Rose J. Dykes 

The ERDC MSRC participated with high visibility in 
the 17th annual DoD HPCMP Users Group Confer
ence, held in Pittsburgh, Pennsylvania, June 18-22. The 
HPCMP presented two ERDC team members with 
Hero Awards. Randall Hand won the “Technical 
Excellence” category for his leading role in launching 
the new HPCMP Data Analysis and Assessment 
Center Web site and also for developing the ezVIZ 
batch visualization scripting tool. Scotty Swillie won the 
“Innovative Management” category for his effort in 
developing the User Interface Toolkit (UIT) and the 
ezHPC projects. 
Five ERDC Team Members made technical 
presentations: Dr. Paul Bennett – “Sustained Systems 
Performance Test on HPCMP Systems” and “Target
ing CTA-Based Computing to Specific Architectures 
Based upon HPCMP Systems Assessment”; Dr. Fred 
Tracy – “Testing Parallel Linear Iterative Solvers for 
Finite Element Groundwater Flow Problems”; Dr. Gerald 
Morris – “Floating-Point Computations on Recon
figurable Computers”; Dr. Ruth Cheng – “Software 
Development and Applications of Consistent/Inconsis
tent-Conservative Flux Computation” and “Coupled 
Watershed-Nearshore Modeling—Phase II”; and Tyler 
Simon – “Application Scalability and Performance on 
Multicore Architectures.” 
The Conference Poster Session included three ERDC 
posters: Paul Adams – “HPCMP Data Analysis and 
Assessment Centers”; Scotty Swillie and Glen Brown
ing – “ezHPC: Incorporating a Program-wide, User-
Centered Design Approach into the ezHPC User 
Interface”; and Dean Hampton and John Mason – “Do 
You Know What Resources Are Offered by the OKC?” 

DoD HPCMP presents Innovative Management Award 
to Scotty Swillie (left) and Technical Excellence Award 

to Randall Hand (right) (Photograph courtesy of 
HPCMPO) 

Tyler Simon and Dr. Tom Oppe conducted 
a tutorial entitled “Performance Programming on HPC 
Platforms Utilizing Multicore Processors.” In another 
tutorial, Paul Adams presented a hands-on demonstra
tion of software tools for remote visualization and 
explained the features of the Data Analysis and As
sessment Center Web site. 
With the theme “A Bridge to Future Defense,” the 
conference brought together personnel from all of the 
HPCMP computing centers and the users of their 
resources, providing a forum for communication, 
training, and discussion of HPC and its impact on 
science and technology. 

(From left) Amanda Hines,
 
Chris Merrill, Owen Eslinger, and
 
Dean Hampton, all from ERDC,
 
at Hero Awards Celebration
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  Next Generation .. . 
By Rose J. Dykes 

ERDC MSRC Team Members Mentor JSU Graduate Students 
Drs. Gerald R. (Jerry) Morris and Robert S. (Bob) 
Maier mentored four Jackson State University (JSU) 
graduate students this past summer. All of the students 
received funding from the National Science Foundation 
Louis Stokes Mississippi Alliance for Minority Partici
pation Bridge to the Doctorate Fellowship Program. 
Dr. Morris, a computer scientist at the ERDC MSRC, 
served as a mentor for Kevin Pace, Miguel Gates, and 
Justin Rice, all receiving master’s degrees in computer 
engineering from JSU. Their research focuses on 
mapping computational kernels onto reconfigurable 
computers. 

Tomekia Simeon, who is presently completing final 
requirements for her doctoral degree in computational 

Kevin Pace presents “Introduction/Overview of VHDL,
 
Coding, and Necessary ToolSets”
 

chemistry from JSU, was mentored by Dr. Maier, 
Assistant Director for the ERDC MSRC. Simeon 
graduated in 2005 from the Computational Center for 
Molecular Structure and Interactions at JSU with a 
master’s degree in theoretical chemistry. She has been 
published in peer-reviewed international journals and 
has made over 30 presentations in the United States 
and international conferences. 

All four students made presentations at a seminar held 
in the ERDC Information Technology Laboratory on 
August 22. 

Tomekia Simeon presents “Computational Insight into 
the Chemical and Electronic Properties of Doped C70 

Fullerene and Nanoclusters” 

Miguel Gates presents “Step-by-Step Derivation Process
 
Used for the Formation of High-Speed Computations”
 

Justin Rice presents “Role of Reconfigurable Computers
 
in the Hardware Development of High-Speed Computations”
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ERDC MSRC Participates in SAME/Army Engineering and 
Construction Camp 
David Stinson and Paul Adams participated in a 1-week 
program of the Society of American Military Engineers 
(SAME)/Army Engineering and Construction Camp 
held in Vicksburg, Mississippi, June 10-16. Stinson 
discussed high performance computing and its use in 
supporting the U.S warfighter. He then conducted tours 
of the ERDC MSRC DoD High Performance Comput
ing Center, talking about each of its computing re
sources and their respective computing capabilities. 
Adams discussed scientific visualization and its use in 
enabling DoD scientists and engineers in communicat
ing all aspects of their research. He also presented 
several visualization demonstrations of DoD research 
projects. 
Forty high school juniors and seniors comprised this 
year’s campers, who were competitively selected to 
attend the camp. Some of the criteria for selection are 

being on a high school track that will provide a basis for 
attendance at an accredited college or university (i.e., 
taking appropriate mathematics and science courses); 
expressing intent to pursue a degree in engineering or 
associated field; and having demonstrated leadership 
characteristics through participation in extracurricular, 
sports, and community activities. 
According to SAME/Vicksburg Web site, “the Engi
neering and Construction Camp is designed to provide 
high school students with an excellent opportunity to 
gain hand-on experience in engineering and construc
tion skills in Vicksburg’s wide-ranging engineering 
community. This one-week program is supervised by 
professional engineers and volunteers from the local 
engineering organizations. The campers will gain a 
wealth of knowledge about the various career choices 
in the fields of engineering and construction.” 

David Stinson, ERDC MSRC Acting Director, talks to a few of the 40 SAME/Army Engineering 
and Construction campers 
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visitors
 

(From left) Dr. Bob Maier, ERDC MSRC Assistant 
Director; Felicia Thompson, ERDC Public Affairs Office; 
and Frank Ellis, Engineer Inspector General, U.S. Army 

Corps of Engineers (USACE) Inspector General’s 
Office, August 15 

(From left) David Stinson, ERDC MSRC Acting Director; 
Dr. Guillermo Riveros, ERDC Information Technology 
Laboratory (ITL); and Dr. Felipe Acosta and Professor 
Ismael Pagan, University of Puerto Rico-Mayaguez, 
August 10 

(From left) Dr. James Houston, ERDC Director;
 
Dr. Alexander MacLachlan, Army Laboratory
 

Assessment Group; Tony Mancini, USACE Liaison to
 
Assistant Secretary of the Army for Acquisition,
 

Logistics, and Technology; and Greg Rottman,
 
ITL Acting Deputy Director, July 25
 

ERDC MSRC Resource, Fall 2007 28 



 

 visitors
 

Dr. Mike Stephens (left), ERDC Data Analysis and 
Assessment Center (DAAC) Lead, and Ed Gough 
(right), Deputy Commander and Technical Director, 
Naval Meteorology and Oceanography Command, 
Stennis Space Center, July 17 

(From left) Dr. Mitch Erickson, Science and Technology Directorate, Department
 
of Homeland Security; Dr. Mike Stephens; Dr. Stan Woodson, ERDC
 

Geotechnical and Structures Laboratory (GSL); Georgette Hlepas, Naval
 
Postgraduate School, Science, Mathematics and Research for Transformation
 

program intern, GSL; Mitch Erickson, Department of Homeland Security;
 
Dr. Mary Ellen Hynes, USACE Headquarters; Dr. Robert Hall, GSL,
 

July 11
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(From left) MG Steve Abt, Deputy Chief of Engineers--
Reserve Component; SGM McClinton Brown, USACE, 

Washington, D.C.; and David Stinson 

(From left) Tom Biddlecome, DAAC; William Laska, 
Science and Technology Directorate, Department of 
Homeland Security; and Dr. Mike Sharp, ERDC GSL, 
June 20 
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David Stinson with students from University of Puerto 
Rico-Mayaguez, June 19 

(From left) David Stinson; BG Todd Semonite,
 
Commander, North Atlantic Division, New York;


 Greg Rottman; Dr. James Houston;

 COL Rick Jenkins, ERDC Commander
 

Paula Lindsey, ERDC MSRC, and Dr. Bob Maier 
with 20th Engineer Brigade, Fort Bragg, 
North Carolina, May 9 
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acronyms
 

Below is a list of acronyms commonly used among the DoD HPC community. These acronyms are used through
out the articles in this newsletter. 

ADF Australian Defence Force ITL Information Technology Laboratory 

AMD Advanced Micro Devices, Inc. JSU Jackson State University 

ARSC Arctic Region Supercomputing Center MDS Metadata Server 

CCAC Consolidated Customer Assistance MPI Message Passing Interface 
Center MSRC Major Shared Resource Center 

CFD Computational Fluid Dynamics NFS Network File System 
CPU Central Processing Unit NSWC Naval Surface Warfare Center 
CTA Computational Technology Area OS Operating System 
DAAC Data Analysis and Assessment Center OSS Object Storage Servers 
DoD Department of Defense OST Object Storage Target 
ERDC Engineer Research and Development 

Center 
PET User Productivity Enhancement and 

Technology Transfer 
FY Fiscal Year SAME Society of American Military Engineers 
GB Gigabyte TB Terabyte 
GHz Gigahertz TFLOPS Trillion Floating-Point Operations per 
GSL Geotechnical and Structures Laboratory Second 

HPC High Performance Computing TI Technology Insertion 

HPCMP HPC Modernization Program UGC Users Group Conference 

HPCMPO HPCMP Office UIT User Interface Toolkit 

I/O Input/Output USACE U.S. Army Corps of Engineers 

training schedule 
For the latest on training and on-line registration, one can go 

to the User Productivity Enhancement and Technology 
Transfer (PET) Online Knowledge Center Web site: 

https://okc.erdc.hpc.mil 
Questions and comments may be directed to PET 

at (601) 634-3131, (601) 634-4024, or 
PET-Training@erdc.usace.army.mil 
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